Devoir TES intégration et densités

Extrait du contrôle précédent

3

Pour chaque question, indiquer la seule réponse exacte sans justifier.

Une réponse erronée enlève 0,25 points.

1) Soit $u_n = 10 \times 0, 5^n + 5$.

a) $u_{n+1}=0,5\times u_n$

b) $\lim_{n\to+\infty} (u_n) = 5$

c) $\lim_{n \to +\infty} (u_n) = 10$

d) $u_{n+1}=0,5\times u_n+5$

2) Soit pour tout x réel, $f(x)=2x^3-6x+1$.

a) f'(0)=1

b) f est strictement croissante

e) f'(1)=0

d) f(x)=0 a une seule solution

3) Soit pour tout x réel $f(x)=e^{-2x+1}$.

a) $f'(x)=e^{-2x+1}$

b) f est strictement croissante

c) $f'(x) = -2e^{-2x+1}$

d) f(x)=0 a une seule solution

Exercice 1

6

Calculer les intégrales suivantes :

1) Calculer $A = \int_0^2 x^3 - 3x^2 + 2 dx$ et $B = \int_{-1}^1 e^{3x} dx$.

- 2)a) Vérifier qu'une primitive de la fonction f définie si x>0 par $f(x)=\ln(x)+1$ est la fonction F définie si x>0 par $F(x)=x\ln(x)$.
- b) En déduire $C = \int_{1}^{2} \ln(x) + 1 dx$ (donner la valeur exacte puis une valeur approchée à 0,01 près).
- c) En déduire $D = \int_{1}^{2} x + \ln(x) + 1 dx$ (même consigne).

Exercice 2

4,5

Soit X une variable aléatoire qui suit la loi uniforme sur l'intervalle [0;4].

1) Calculer:

a) $P(X \in [1;3])$

b) P(X∈[0;3])

c) P(X≥2)

d) P(X=2)

2) Déterminer E(X).

Exercice 3

6,5

Soit X une variable aléatoire qui suit la loi normale $\mathcal{N}(\mu;\sigma^2)$, μ et σ sont définis cas par cas.

μ =0 σ=1 P(X∈[-1;1])	μ=0 σ=1 P(X>0)
μ =0 σ =1 P(X=0)	μ =1 σ=2 P(X∈[-1;3])
μ =1 σ=2 P(X∈[-3;5])	μ =1 σ=2 P(X∈[-5;7])

 μ =1 et σ=2, trouver b pour que $P(X \le b)$ =0,5. De même si $P(X \le b)$ =0,975.

"Just a darn minute! — Yesterday you said that X equals two!"