Correction Contrôle Seconde Fonctions

Exercice 1

 $3\times1^{2}-4\times1+1=3-4+1=0$

$$3 \times \left(\frac{1}{3}\right)^2 - 4 \times \frac{1}{3} + 1 = \frac{1}{3} - \frac{4}{3} + \frac{3}{3} = \frac{0}{3} = 0$$
.

 $(10^4)^2 = 10^{4 \times 2} = 10^8$

$$x_I = \frac{2+3}{2} = \frac{5}{2} = 2,5$$
 et $y_I = \frac{-4+6}{2} = \frac{2}{2} = 1$.

Exercice 2

- 1) $]-\infty;-1[\cap]-3;+\infty[=]-3;-1[$ 2) $]-\infty;6]\cup[1;+\infty[=\mathbb{R}]$

3) $]0;2[\cap]2;3[=\emptyset]$

4) $[0;2] \cup [-1;4[=[-1;4[$

Exercice 3

- 1) f et g sont strictement croissantes sur $\mathbb R$ alors que hest strictement décroissante sur \mathbb{R} puisque f(x)=ax+1avec a>0, g(x)=a'x et a'>0 alors que h(x)=a''x+b avec a''<0.
- 2) f est strictement croissante, or f(-1)=0 donc si x<-1, f(x) < f(-1) = 0 d'où le tableau de signes de f :

Х	-∞	-1		+∞
f(x)	_	0	+	

g(0)=0 et g est strictement croissante sur \mathbb{R} .

Х	-∞	0	+∞
g(x)	_	0	+

h(-5)=0 et h est strictement décroissante sur \mathbb{R} .

Х	$-\infty$	5	+∞
g(x)	+	0	_

3) Cherchons x_0 la solution à f(x)=g(x) puis vérifions que $f(x_0)=h(x_0)$

f(x)=g(x) si $x+1=\frac{x}{2}$ soit si $\frac{x}{2}=-1$ càd si $x_0=-2$.

On a donc f(-2)=-1 et g(-2)=-1.

Or
$$h(-2) = -\frac{-2+5}{3} = \frac{-3}{3} = -1$$
. CQFD.

Bonus

On utilise la règle des signes, notons k(x)=f(x)g(x)h(x).

Х	$-\infty$	-5		-1		0	+∞
f(x)	_	_	_	0	+	+	+
g(x)	_	_	_	_	-	0	+
h(x)	+	0	_	_	_	_	_
k(x)	+	0	_	0	+	0	_

Exercice 4

- 1) Df = [-6;4]
- 2) f(3)=4
- 3) f(0)=2
- 4) Les antécédents de 3 par f sont -6, 0,5 et 4.
- -2 n'a pas d'antécédent.
- 5) On trace la droite d'équation y=4, La courbe est endessous de celle-ci si $x \in [-6;1] \cup [3;4]$.

De même avec y=2, la courbe est strictement au-dessus si $x \in [-6; -5[U]0; 4]$.

х	-6	-4		-1	4
f(x)	+	0	_	0	+
х	-6	-2		2	4
f(x)	3	→ -1		→ 5	→ 3