## Correction du contrôle 2<sup>de</sup> n°6

## Exercice 1

1)a) Il y a quatre possibilités pour le premier tirage et quatre pour le second.

b)  $T=\{TT,TA,TU,TX\}$ 

 $\bar{T} = \{AT, AA, AU, AX, UT, UA, UU, UX, XT, XA, XU, XX\}$ 

 $V = \{AA, AU, UA, UU\}$ 

 $\bar{V} = \{TT, TA, TU, TX, AT, AX, UT, UX, XT, XA, XU, XX\}$ 

c) Aucune issue ne réalise TNV.

TUV={TT,TA,TU,TX,AA,AU,UA,UU}

2)a) Cette fois, une lettre obtenue au premier tirage ne peut plus être tirée au second. Il faut donc retirer les doublons.

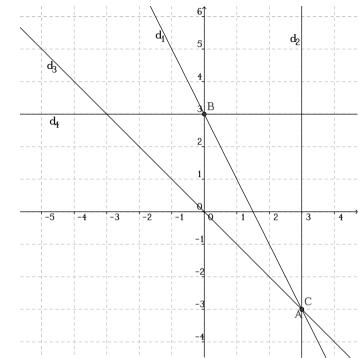
b)  $T=\{TA,TU,TX\}$ 

 $\bar{T} = \{AT, AU, AX, UT, UA, UX, XT, XA, XU\}$ 

 $V = \{AU, UA\}$ 

 $\overline{V} = \{TA, TU, TX, AT, AX, UT, UX, XT, XA, XU\}$ 

c) Aucune issue ne réalise TNV.


TUV={TA,TU,TX,AU,UA}

## Bonus

- ① On trouve, en tâtonnant, a=4 et b=12 ou l'inverse.
- ⑤ Il s'agit du problème résolu par al-Khwarizmi, on peut choisir a=3 et donc b=−13 ou l'inverse.

## Exercice 2

1)



2)  $A \in d_2$  donc son abscisse x vaut 3, son ordonnée y vaut alors  $-2 \times 3 + 3 = -3$  puisque  $A \in d_1$ .

 $B \in d_4$  donc son ordonnée y vaut 3, comme  $B \in d_1$ , son abscisse vérifie -2x+3=3 soit x=0.

 $C \in d_1 \cap d_3$  donc ses coordonnées vérifient le système :

$$\begin{cases} y = -x \\ y = -2x + 3 \end{cases} \Leftrightarrow \begin{cases} y = -x \\ -x = -2x + 3 \end{cases} \Leftrightarrow \begin{cases} y = -x \\ x = 3 \end{cases} \Leftrightarrow \begin{cases} y = -3 \\ x = 3 \end{cases}$$