
Les trois lignes trigonométriques

ABC et A'BC' sont deux triangles rectangles en A et A'. L'angle aigu $\widehat{B} = \widehat{ABC} = \widehat{A'BC'}$ est commun aux deux.

1)a) Quelle configuration reconnaissez-vous?

b) Compléter les égalités :
$$\frac{BC}{BA'} = \frac{BC}{A'C'}$$
.

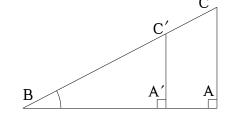
2)a) On a
$$\frac{BA}{BA'} = \frac{BC}{BC'}$$
 done $BC \times \dots = BA \times \dots$

Par conséquent
$$\frac{BA}{BC} = ---$$
.

Ce quotient ne dépend donc pas du choix de la verticale (AC) ou (A'C'), il ne dépend que de la mesure de l'angle \hat{B} . On l'appelle **cos**inus de l'angle \hat{B} , noté $\cos(\hat{B})$.

b) De même, on a
$$\frac{AC}{A'C'} = \frac{BC}{BC'}$$
 donc $BC \times ... = AC \times ...$

Donc
$$\frac{AC}{BC}$$
=----, c'est le **sin**us de \hat{B} , noté $sin(\hat{B})$.


c) Enfin, on a
$$\frac{AC}{A'C'} = \frac{BA}{BA'}$$
 done $BA \times ... = AC \times ...$

Donc
$$\frac{AC}{BA} = ---$$
, c'est la tangente de \hat{B} , notée $\tan(\hat{B})$.

Les trois lignes trigonométriques

ABC et A'BC' sont deux triangles rectangles en A et A'. L'angle aigu $\hat{B} = \widehat{ABC} = \widehat{A'BC'}$ est commun aux deux.

1)a) Quelle configuration reconnaissez-vous?

b) Compléter les égalités :
$$\frac{BC}{BA'} = \frac{BC}{A'C'}$$
.

2)a) On a
$$\frac{BA}{BA'} = \frac{BC}{BC'}$$
 donc $BC \times \dots = BA \times \dots$

Par conséquent
$$\frac{BA}{BC} = ---$$
.

Ce quotient ne dépend donc pas du choix de la verticale (AC) ou (A'C'), il ne dépend que de la mesure de l'angle \hat{B} . On l'appelle **cos**inus de l'angle \hat{B} , noté $\cos(\hat{B})$.

b) De même, on a
$$\frac{AC}{A'C'} = \frac{BC}{BC'}$$
 donc $BC \times ... = AC \times ...$

Donc
$$\frac{AC}{BC}$$
=—, c'est le **sin**us de \hat{B} , noté $\sin(\hat{B})$.

c) Enfin, on a
$$\frac{AC}{A'C'} = \frac{BA}{BA'}$$
 donc $BA \times \dots = AC \times \dots$

Donc
$$\frac{AC}{BA} = ---$$
, c'est la tangente de \hat{B} , notée $tan(\hat{B})$.