Let’s write it:
∏ 1 ⩽ i < j ⩽ n fg ( i ) − fg ( j ) i − j = ∏ 1 ⩽ i < j ⩽ n g ( i ) − g ( j ) i − j ∏ 1 ⩽ i < j ⩽ n fg ( i ) − fg ( j ) g ( i ) − g ( j ) or g is a bijection, so we can reorganize i and j such as the last product is ∏ 1 ⩽ i < j ⩽ n f ( i ) − f ( j ) i − j .
Therefore, sign(fg)=sign(f)sign(g).
Maison