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1. Basic ring theory

1.1. The definition.

Definition. A ring is a set R equipped with two binary operations

+ : R×R → R, (a, b) 7→ a+ b,

· : R×R → R, (a, b) 7→ a · b,
a unary operation

− : R → R, a 7→ −a,
and elements 0R and 1R such that the following properties hold:

(1) (R, 0R,+,−) is an abelian group, that is for all a, b, c ∈ R , we
have :
(a) a+ b = b+ a
(b) (a+ b) + c = a+ (b+ c)
(c) a+ 0R = 0R + a = a
(d) a+ (−a) = 0R

(2) Multiplication is associative:

a.(b.c) = (a.b).c for all a, b, c ∈ R

(3) 1R is the neutral element for multiplication:

a.1R = 1R.a = a for all a ∈ R

(4) Multiplication is distributive over addition:

a.(b+ c) = a.b+ a.c (b+ c).a = b.a+ c.a for all a, b, c ∈ R

A commutative ring is a ring R satisfying a.b = b.a for all a, b,∈ R.

Note that we have written a + b for the first operation applied to the
pair (a, b) and a.b for the second operation applied to (a, b). Often we
will omit the . from the notation altogether, and write ab instead of a.b
for the result of applying . to the pair (a, b).

The notation is the same as that used for ordinary arithmetic. This
is no coincidence, but a reflection of the fact that ”everyday” objects
such as the integers, Z, the rational numbers, Q, and the real numbers,
R, with their usual sum and product operations are examples of rings.
Note however that the natural numbers N do not form a ring, because
the unary operation − is not defined on them.

1.2. First examples. As mentioned above, Z, Q, R, C are commuta-
tive rings.

Another important example is the ring Z /nZ for n ≥ 1. Elements of
Z /nZ are equivalence classes of integers, under the relation given by
a ∼ b if and only if n divides a − b (You may like to think of these
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equivalence classes as the cosets of the additive subgroup of Z generated
by n.) This is denoted by a ≡ b[n].

In other words, the elements of Z /nZ are the sets nZ, 1+nZ, · · · , (n−
1) + nZ.

Writing a for the equivalence class of a, the ring operations are defined
by

a+ b = a+ b,−a = −a, a.b = a.b.

The zero element of this ring is the class 0 containing 0, and the unity
in this ring is the class 1 containing 1. The classes of 0, 1, . . . , n− 1 are
all distinct, and any a is equivalent to one of these elements. It follows
that Z /nZ has exactly n elements.

Of course, we should check that these operations does not depend on
the choice of the integers a and b representing a and b. Let us do it for
addition:

if a′ = a and b′ = b, we have to check that a+ b = a′ + b′. But by
definition of the equivalence relation, we have a′ = a+nm for some m ∈
Z, and b′ = b+nk for some k ∈ Z. We then have a′+b′ = a+b+n(m+k),
which means that a′ + b′ = a+ b, since (a′ + b′)− (a+ b) is divisible by
n.

Another notation for Z /nZ is Zn.

We are now going to define two families of rings, which are of real
importance in ring theory. Let d ∈ Z, d 6= 0 be a square-free integer
(that is not divisible by any m2, m ∈ Z).

If d > 0,
√
d is meant to be the positive square root of d. If d < 0,

√
d

is meant to be the purely imaginary complex number i
√
−d.

Proposition 1.1. Let d ∈ Z, d 6= 0 be a square-free integer. Let Z[
√
d]

and Q[
√
d] be the subsets of C defined by:

Z[
√
d] = {z ∈ C |z = a+ b

√
d for some a, b ∈ Z},

Q[
√
d] = {z ∈ C |z = a+ b

√
d for some a, b ∈ Q}.

Then Z[
√
d] and Q[

√
d] are commutative rings for the 0, 1,+, .,− of C.

Moreover, if d ≡ 1[4], the set

Z[
1 +

√
d

2
] = {z ∈ C |z = a+ b

1 +
√
d

2
for some a, b ∈ Z}

is also a commutative ring for the 0, 1,+, .,− of C.

Proof. Left as an exercise. �
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Warning: The last part is not true if d 6≡ 1[4].

For example, the sets Z[i],Z[
√

2],Z[i
√

2],Q[i],Q[
√

2],Q[i
√

2],Q[j] are
commutative rings.

Bonus exercise: Assume that d ∈ Z is a square-free integer, such
that d ≡ 1 mod 4. Let

Z[
−1 +

√
d

2
] = {z ∈ C | z = a+ b · −1 +

√
d

2
for some a, b ∈ Z}.

Show that Z[−1+
√

d
2

] = Z[1+
√

d
2

].

In particular, Z[−1+
√

d
2

] is also a ring for the 0, 1,+,−. of C.

For example, Z[j] is a ring, where j is the complex number

j = e2iπ/3 = −1

2
+ i

√
3

2
.

1.3. New rings from old. There are lots of ways to construct new
rings from old:

a) Polynomial rings: If R is a ring, then R[X], the ring of polynomials
in the indeterminate X, has as elements the finite sequences

a0 + a1X + a2X
2 + · · · + anX

n,

for ai ∈ R, or equivalently sums of the form
∑

i≥0

aiX
i,

where all but finitely many of the ai are zero. The operations are
defined in the usual way:

(

∑

i

aiX
i

)

+

(

∑

i

biX
i

)

=

(

∑

i

(ai + bi)X
i

)

,

(

∑

i

aiX
i

)

.

(

∑

i

biX
i

)

=

(

∑

i

ciX
i

)

,

where

ci = a0.bi + a1.bi−1 + a2.bi−2 + · · · + ai.b0.

The zero element is the polynomial
∑

i 0X
i, and the unity element is

1 +
∑

i>0 0X i.

Note that the polynomial Xn is equal to X multiplied by itself n times
using the above definition. This is thus consistent with usual notation.

We write R[X,Y ] = R[X][Y ] for the ring of polynomials in two un-
knowns X and Y .



6 RINGS AND FIELDS

b) Matrix rings: Denote by Mn(R) the set of all n × n matrices over
the ring R. If A is the matrix with entries (aij), and similarly for B,
C, D, then A+B = C, and A.B = D, where

cij = aij + bij, dij =
∑

k

aikbkj.

c) Products of rings: If R1 and R2 are rings, then

R1 ×R2 := {(r1, r2), r1 R1, r2 ∈ R2}
is a ring, where the operations are defined componentwise by

(r1, r2) + (r′1, r
′
2) = (r1 + r′1, r2 + r′2)

−(r1, r2) = (−r1,−r2)

(r1, r2).(r
′
1, r

′
2) = (r1.r

′
1, r2.r

′
2)

The zero element is (0R1
, 0R2

) and the identity element is (1R1
, 1R2

).

d) Subrings:

Definition. Let R be a ring. A subset S of R is called a subring if S
contains 0R and 1R, and S is closed under the operations +,−, ., that
is for all a, b ∈ S, we have a+ b, a.b,−a ∈ S.

Proposition 1.2. Let R be a ring, and let S be a subring of R. Then
S is a ring with the same operations and 0 and 1 as R.

Proof. Left as an exercise. �

The interest of this proposition is that it can be used to prove that a set
S is a ring, by proving that it is a subring of a well-known ring, allowing
us to check only 3 easy properties instead of a bunch of axioms.

Examples.

(1) Z[
√
d],Z[1+

√
d

2
] and Q[

√
d] are subrings of C.

(2) Z is a subring of Q.
(3) Mn(Z) is a subring of Mn(R).
(4) More generally, if S is a subring of R, then Mn(S) is a subring

of Mn(R).
(5) R is a subring of R[X], the elements of R being viewed as

constant polynomials.

Proposition 1.3. Let R be a ring. The intersection of a family of
subrings of R is a subring of R.

Proof. Left as an exercise. �
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e) Rings of functions: If W is any set, then the set RW of all functions
f : W → R becomes a ring, where the operations are defined by

(f + g)(w) = f(w) + g(w), (f.g)(w) = f(w).g(w).

The zero of this ring is the constant function that sends every element
of W to 0R, and the identity is the constant function that sends every
element of W to 1R.

Other similar examples include the ring of continuous functions from
[0, 1] to R (usually denoted by C([0, 1];R)).

Other constructions, such as factor rings and fields of fractions, will be
considered later.

We use familiar notation because many of the usual properties of ad-
dition and multiplication hold in all rings. But we shouldn’t assume
them, because some will not always hold. They should be deduced
from the axioms.

Proposition 1.4. Let R be a ring, and let a, b be elements of R. Then

i) a.0 = 0 = 0.a ii) a.(−b) = −(a.b) = (−a).b
iii) (−1).a = −a iv) −(−a) = a

v) (−a).(−b) = a.b vi) (−1).(−1) = 1

vii) the identity element 1R is unique viii) the zero element 0R is
unique.

Example of proof: For viii), since (R,+,−, 0) is an abelian group, we
can quote the result that the identity element of a group is unique.
Similarly, iv) involves only the additive group structure. For i), since
0 = 0 + 0,

a.0 = a.(0 + 0) = a.0 + a.0.

Now add −(a.0) to each side, and obtain 0 = a.0 + (−(a.0)) = a.0 +
a.0 + (−(a.0)) = a.0. The other equation is similar.

1.4. Special types of rings. Let R be a ring in which 1 = 0. Then
R has exactly one element. Indeed, if a ∈ R, then a = 1.a = 0.a = 0.

Definition. A ring in which 1 = 0 is called the trivial ring.

Definition. Let R be a ring. We say that R has zero divisors if there
exist x, y ∈ R, x, 6= 0, y 6= 0 such that x.y = 0. In this case, x is called
a left zero divisor and y is called a right zero divisor.

Definition. A ring R is called an integral domain if it is non-trivial,
commutative and for all x, y ∈ R, we have

xy = 0 ⇒ x = 0 or y = 0

Remarks 1.5. (1) A ring R is an integral domain if it is non-
trivial, commutative and has no zero-divisors.
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(2) Any subring S of an integral domain R is an integral domain.
Indeed, a subring of R is a ring itself, and since 1R 6= 0R, S is not
trivial either since it has same 0 and 1. Also S is commutative
since R is. Finally, assume that xy = 0 in S. Viewing this
equality in R, we deduce that x = 0 or y = 0.

Examples.

(1) The rings Z, Q, R and C are integral domains.
(2) In the ring Z /4Z, consider the element 2 = 2 + 4Z. This

element is non-zero, since 4 does not divide 2, but
2.2 = 2.2 = 4 = 0, so 2 is a zero divisor in Z /4Z.

(3) For n ≥ 2, Mn(C) is not an integral domain, since we can find
two non zero matrices A,B such that AB = 0 (Can you find

an example ?). Of course, this is cheating a bit, since Mn(C)
is not commutative so it cannot be an integral domain anyway.

(4) If R is not trivial, the ring R×R is not an integral domain,
since we have

(1, 0) · (0, 1) = (0, 0).

(5) The rings Z[
√
d], and Z[1+

√
d

2
] are integral domains (exercise).

Definition. Let R be a ring. Let f ∈ R[X], f 6= 0. Since f 6= 0, we
can write f = anX

n + an−1X
n−1 + · · · + X + 1, with ai ∈ R, an 6= 0.

The integer n ≥ 0 is called the degree of f , and is denoted by deg(f).

The coefficient an is called the leading coefficient of P .

For example, P (X) = 1 ∈ C[X] has degree 0, and P (X) = −2X3 +
5X + 2 ∈ Z[X] has degree 3.

Proposition 1.6. Let R be a ring. Then the following properties hold:

(1) R[X] is non trivial if and only if R is non trivial
(2) R[X] is commutative if and only if R is commutative
(3) R[X] has no zero divisors if and only if R has no zero divisors
(4) R(X]is an integral domain if and only if R is an integral do-

main.
Moreover, if (3) or (4) holds, then we have

deg(PQ) = deg(P ) + deg(Q) for all P,Q ∈ R[X], P 6= 0, Q 6= 0.

Proof. Point (1) comes from the fact that R and R[X] have same 0 and
1 .

Let us prove (2). Assume that R[X] is commutative, and let r, s ∈ R.
Viewing r and s as constant polynomials, and using the fact that R[X]
is commutative, then we have rs = sr. Conversely, if R is commutative,
it is easy to check that R[X] is commutative (simply use the definition
of multiplication. Do it!!!).
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Let us prove (3). Assume first that R[X] has no zero divisors, and take
r, s ∈ R such that rs = 0. Viewing r and s as constant polynomials,
and using the fact that R[X] has no zero divisors by assumption, we
conclude that r = 0 or s = 0 in R[X], and therefore in R. Assume
now that R has no zero divisors. We need to show that if P , Q are
non-zero polynomials, then PQ is non-zero. Suppose that deg(P ) = m
and deg(Q) = n, so P = amX

m + · · · + a1X + a0 where am 6= 0, and
Q = bnX

n + · · · + b1X + b0, with bn 6= 0. The coefficient of Xm+n

in PQ is ambn 6= 0 since R has no zero divisors, so PQ 6= 0 and
deg(PQ) = m+ n = deg(P ) + deg(Q).

Point (4) is simply a consequence of (1), (2) and (3). �

Remark 1.7. The last part of the proposition is not true anymore if
R fails to be an integral domain. Can you give an example?

Definition. An element a ∈ R is a unit if there exists b ∈ R with
a · b = 1 = b · a. The set of units is denoted by R∗.

Notice that the element b above is unique: indeed, if b · a = 1 = a · b
and c · a = 1 = a · c, then b = 1 · b = (c · a) · b = c · (a · b) = c · 1 = c. It
is denoted by a−1, and called the inverse of a.

Proposition 1.8. Let R be a ring. Then R∗ is a group for the multi-
plication.

Proof. The multiplication is associative, ans has a neutral element,
which is 1. Now if a ∈ R∗, the inverse a−1 ∈ R is also a unit with
inverse a, since we have

a−1 · a = a · a−1 = 1.

Thus R∗ is stable by inverse. If a, b ∈ R∗, then (a · b) · b−1 · a−1 =
a(b · b−1) · a−1 = a · 1 · a−1 = a · a−1. Similarly, b−1 · a−1(a · b) = 1, so
a · b ∈ R∗ and we have (a · b)−1 = b−1 · a−1. �

Remark 1.9. We proved along the way that if a, b ∈ R∗, then

(a−1)−1 = a, (ab)−1 = b−1a−1.

Be careful!!!The set R is not a group for multiplication.

Examples.

(1) 0 is never a unit, except in the trivial ring.
(2) 1 and −1 are always units in any ring R.
(3) 2 is a unit in Q, but is not a unit in Z. Indeed, since Z ⊂ Q, if

2 has an inverse in Z, it has an inverse in Q, which is
necessarily 1

2
. But 1

2
/∈ Z. In fact, we have Z∗ = {±1} (Check

it!!!).

The following proposition will be useful in the sequel.
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Lemma 1.10. Let R be an integral domain. Then R[X]∗ = R∗.

Proof. Let P ∈ R[X]∗. Then there exists Q ∈ R[X] such that PQ =
QP = 1. It implies in particular that P 6= 0.

Applying the degree on both sides of the equation, we get deg(PQ) =
deg(1), so deg(P ) + deg(Q) = 0, since R is an integral domain. Since
deg(P ) and deg(Q) are non negative integers, we deduce that deg(P ) =
deg(Q) = 0. Therefore P and Q are non zero constant polynomials,
say P = a and Q = b. But then we have ab = ba = 1, so a ∈ R∗.
Therefore P = a is invertible as well, with inverse Q = a−1.

Conversely, if a ∈ R∗, it is invertible in R[X], with inverse a−1. Thus
R[X] = R∗ if R is an integral domain.

�

Once again, this is NOT true if R fails to be an integral domain. Can
you find an counterexample? (Hint: Try R = Z /4Z).

Definition. A ring R is called a division ring if it is non-trivial, and
R∗ = R\0, that is every element except 0 is a unit in R.

A ring R is called a field if it is non-trivial, commutative, and every
element except 0 is a unit in R.

Thus a field is the same thing as a commutative division ring.

Examples.

(1) The ring Z is not a field (the only units in Z are 1 and −1).
(2) The rings Q, R and C are fields.
(3) The ring Z /3Z is a field, because 2 · 2 = 4 = 1, so both 1 and

2 are units.
(4) The rings Z[

√
d] and Z[1+

√
d

2
] are not fields (exercise)

(5) The ring Q[
√
d] is a field (exercise)

(6) If K is a field, then the set of rational fractions

K(X) = {P (X)

Q(X)
, P,Q ∈ K[X], Q 6= 0}

is a field. Recall that the operations on K(X) are defined by:

P1

Q1

+
P2

Q2

=
P1Q2 + P2Q1

Q1Q2

,
P1

Q1

.
P2

Q2

=
P1P2

Q1Q2

,−P
Q

=
−P
Q
,

and 0K(X) =
0

1
, 1K(X) =

1

1

Definition. Let F be a field. We say that a subset K ⊂ F is a subfield
of F , if K is a subring of F and for all x ∈ K − {0}, x−1 ∈ K.

Examples.
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(1) Q,Q[
√
d],R are subfields of C

(2) Z is not a subfield of Q
(3) If K is a field, K[X] is not a subfield of K(X) (do you see

why?).

Proposition 1.11. Let F be a field. A subfield K of F is a field for
the same operations. Morever, the intersection of a family of subfields
of F is a subfield of F .

Proof. As for the case of subrings. �

Proposition 1.12. A zero divisor cannot be a unit. In particular, a
division ring contains no zero divisors, and every field is an integral
domain.

Proof. Assume that a ∈ R, a 6= 0 is a left zero divisor, so there exists
b 6= 0 such that a · b = 0. If a is a unit then

b = 1 · b = (a−1 · a) · b = a−1 · (a · b) = a−1 · 0 = 0.

This is a cotnradiction. The case of right zero divisors is left to the
reader. The remaining part of the proposition follows easily from the
first one. �

Warning: An integral domain is not necessarily a field. For example,
Z is a integral domain which is not a field. However, the following
proposition shows that Z /z Z is either a field whenever it is an integral
domain, but this phenomenon is really particular to rings with finitely
many elements.

Proposition 1.13. The ring Z /nZ is a field if and only if n is a
prime number. If n ≥ 2 is not a prime number, then Z /nZ has zero
divisors.

Proof. Let us show that Z /pZ is a field when p is a prime number. We
already now that it is a non-trivial commutative ring, so it remains to
show that any non-zero element has an inverse. Let a ∈ Z /pZ, a 6= 0.
We then have p 6 |a, so a and p a relatively prime since p is a prime
number. By Bézout theorem, there exists u, v ∈ Z such that ua+ vp =
1. Hence we have

1 = ua+ vp = u.a+ v.p = u.a.

Thus u is an inverse for a.

Now assume that n is not prime. If n = 1, all the the integers are
congruent modulo n, so Z /nZ is the trivial. If n ≥ 2, the assumption
implies that n = n1n2, with 1 < n1, n2 < n. In this case, ni 6= 0 since
ni is not a multiple of n, and we have

n1 · n2 = n1n2 = n = 0.
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�

Notation: If p is a prime number, the field Z /pZ will be denoted by
Fp.

1.5. An example of a division ring: Hamilton quaternions. Ap-

plications to coding theory.

1.5.1. Hamilton quaternions. Remember that if z = a + ib ∈ C, then
z is by definition z = a− ib, and that we have zz = a2 + b2.

We are now going to define a non-commutative division ring, the ring
H of Hamilton quaternions.

We define the set H by

H = {M ∈M2(C)|M =

(

z1 −z2

z2 z1

)

, z1, z2 ∈ C}

Proposition 1.14. The set H is a non-commutative subring of M2(C).
Moreover, it is a division ring.

Proof. The 0 and 1 of M2(C) are the zero matrix and the identity
matrix, which clearly both belong to H.

Now let M,M ′ ∈ H, so

M =

(

z1 −z2

z2 z1

)

,M ′ =

(

z′1 −z′2
z′2 z′1

)

,

for some z1, z
′
1, z2, z

′
2 ∈ C.

We have

−M =

(

−z1 z2

−z2 −z1

)

=

(

−z1 −(−z2)
−z2 −z1

)

,

so −M ∈ H.

We have

M +M ′ =

(

z1 + z′1 −z2 − z′2
z2 + z′2 z1 + z′1

)

=

(

z1 + z′1 −(z2 + z′2)

z2 + z′2 z1 + z′1

)

,

so M +M ′ ∈ H.

Finally, we have

MM ′ =

(

z1z
′
1 − z2z′2 −z1z

′
2 − z2z′1

z2z
′
1 + z1z′2 −z2z′2 + z1z′1

)

=

(

z1z
′
1 − z2z′2 −(z1z

′
2 + z2z′1)

z1z′2 + z2z′1 z1z′1 − z2z′2

)

so MM ′ ∈ H. Hence H is a subring of M2(C),clearly non-trivial.
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transmitter receiverchannel path

x0x1

x3 x2

h4

h1

h3

h2

y0y1

y3 y2

We now prove that H is not commutative.

We have

(

i 0
0 −i

)

,

(

0 −1
1 0

)

∈ H, and one can check easily that

(

i 0
0 −i

)(

0 −1
1 0

)

=

(

0 −i
−i 0

)

,

but that

(

0 −1
1 0

)(

i 0
0 −i

)

=

(

0 i
i 0

)

,

so H is not commutative.

Finally, we prove that every non zero element of H is invertible. First
notice that

det

(

z1 −z2

z2 z1

)

= z1z1 + z2z2 = |z1|2 + |z2|2,

so it is non-zero, unless z1 = z2 = 0.

So any non-zero element of H is an invertible matrix, so we just have
to check that the inverse of this matrix remains in H. But we have

M−1 =
1

|z1|2 + |z2|2
(

z1 z2

−z2 z1

)

=
1

|z1|2 + |z2|2
(

z1 −(−z2)
−z2 z1

)

,

so M−1 ∈ H, and since MM−1 = M−1M = I2, it shows that every
non-zero element of H has an inverse in H. �
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1.5.2. Hamilton quaternions and coding theory: the Alamouti code. In
this section, we give an application of ring theory to wireless commu-
nication.

Suppose that we want to transmit information symbols without using
any wire. Typically, it is the case when you are using wireless internet
connections or cellular phones. During transmission via the channel
(the air for example, in the case of cellular phones), two phenomenons
may occur: fading, that is a loss of intensity of the transmitted infor-
mation, due to the fact that it may go through obstacles, such as trees
or buildings (this is way your voice may not appear as loud as it is
actually is to your interlocutor), and noise, due for example to inter-
ferences with other waves (this is why your interlocutor may not hear
you properly sometimes). This is why the information transmitted to
the receiver is not the original one.

The problem is to encode your information and transmit it in such a
way that the probablity error is minimal, that is only very few errors
occur during transmission. Of course, one way to proceed to send
the same information several times, but it costs computer memory, it
increases the amount of energy necessary for transmission, and no so
much information is transmitted, so it is not worth it.

Suppose that we have two transmitting antennas and two receiving
antennas. The information symbols we want to transmit are com-
plex numbers. Each transmitting antenna sends an information sym-
bol which will be received by each of the two receiving antennas, the
information symbol going through two different paths. We will assume
that the channel does not have time to change during two successive
uses.

During the first use, the first antenna transmits x0 and the second one
transmits x2. Each of these two symbols go through the two possible
paths and are received by the receiving antennas.

The symbol x0 arrives to the first receiving antenna as h1x0 and to
the second one as h3, where h1, h3 are coefficients representing fading.
The symbol x2 arrives to the first receiving antenna as h2x0 and to the
second one as h4, where h2, h4 are once again coefficients representing
fading.

Therefore, the first receiving antenna receives a signal y0 which is the
sum of 3 different signals: h1x0, h3x1 and some noise ν1, so

y0 = h1x0 + h3x3 + ν1

Similarly, the second receiving antenna receives a signal y2 of the form

y2 = h2x0 + h4x2 + ν2
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During the second use, the first transmitting antenna sends x1, and the
second one sends x3. Since the channel does not have time to change
between the two uses, the fading coefficients will remain the same, and
the first and second receiving antennas will receveive signals y1 and y3

of the form
y1 = h1x1 + h3x3 + ν3

and
y3 = h2x1 + h4x3 + ν4.

Therefore, setting

H =

(

h1 h3

h2 h4

)

, N =

(

ν1 ν3

ν2 ν4

)

and

X =

(

x0 x1

x2 x3

)

, Y =

(

y0 y1

y2 y3

)

,

we get the following matrix equation

Y = HX +N.

The matrices H and N are random matrices following a Gaussian law.

We send in fact a matrix X ∈ M2(C), and we receive a matrix Y ∈
M2(C). The receiver is supposed to know the set C of all matrices X we
send, called the codebook . An element X ∈ C is called a codeword. He
is supposed to know also the channel, that is the matrix H. The main
problem is that Y /∈ C in general. How to decode? That is, how to
recover a codeword X̂ ∈ C from Y , in such a way that the probability
P(X → X̂) of sending X and decoding X̂ 6= X is as small as possible?

The recipe is as follows: for any M =

(

a b
c d

)

, set

||M ||2 =
√

|a|2 + |b|2 + |c|2 + |d|2

The codeword X̂ will be a codeword such that ||Y −HX ′||2 is minimal
among all the codewords X ′ ∈ C (if there is more than one codeword
with this property, one is chosen at random). The receiver can always

compute X̂ since he knows C and H.

With this way of decoding, we have

P(X → X̂) ≤ C

min
X 6=X′∈C

| det(X −X ′)|4 ,

where C is a constant depending on the channel and X,X ′ describe
C. So the main question is now: how to design the codebook C? The
criterion is: reliability ! To have an interesting upper bound, and ensure
that P(X → X̂) is small, we need to maximize min

X 6=X′∈C
| det(X −X ′)|4,
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the first step being that we need to ensure that C is chosen in such a
way that det(X −X ′) 6= 0 for all X 6= X ′.

The main difficulty to achieve this is the non-linearity of the deter-
minant. The idea is then to take for C a finite subset of a subring
R of M2(C) which is also a division ring. In this way, we will have
X−X ′ ∈ R\{0} since R is a ring and the fact that R is a division ring
will ensure that every X−X ′ is invertible in R, and therefore in M2(C),
which means that we will have det(X −X ′) 6= 0 for all X 6= X ′ ∈ C.

For example, the Alamouti code sends two information symbols z1, z2 ∈
{±1,±i} as follows: with the previous notation, we set x0 = z1, x1 =
−z2, x3 = z2, x3 = z1, so the two antennas transmit four information
symbols made from the original data z1, z2. In this case we take

C = {M ∈M2(C)|M =

(

z1 −z2

z2 z1

)

, z1, z2 ∈ {±1,±i}}

Now to evaluate min
X 6=X′∈C

| det(X −X ′)|4, instead of testing 16×15
2

= 120

possibilities, observe that C ⊂ H∩M2(Z[i]). Since Z[i] is a subring of C,
M2(Z[i]) is a subring of M2(C), and therefore so is S := H∩M2(Z[i]).
Hence X −X ′ ∈ S for all X 6= X ′ ∈ C. Therefore

min
X 6=X′∈C

| det(X −X ′)|4 ≥ min
06=M∈S

| det(M)|4

But ifM =

(

z1 −z2

z2 z1

)

∈ S, then det(M) = |z1|2+|z2|2. IfM 6= 0, z1

or z2 is not 0, say z1, and since z1 ∈ Z[i], we have |z1|2 ∈ N. Since z1 6=
0, we get |z1|2 ≥ 1, so min| det(M)| ≥ 1. This lower bound is easily
obtained for z1 = 1, z2 = 0 for example. Hence min

06=M∈S
| det(M)|4 = 1.

Putting things together, we get

min
X 6=X′∈C

| det(X −X ′)|4 ≥ 1

It appears that the Alamouti code has really good performances, thanks
to this last property (The lower bound 1 may not appear to be very
big, but the other existing codes have very small lower bounds).
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2. Ring homomorphisms. Definition and basic examples.

We start by recalling some basic definitions of set theory.

Definition. Let E,E ′ be two sets, and let f : E → E ′ be a map.

We define Im(f) to be the subset of E ′ defined by

Im(f) = {x′ ∈ E ′|x′ = f(x) for some x ∈ E}

In other words, Im(f) = {f(x), x ∈ E}, that is the set of all possible
values attained by the map f .

We say that f : E → E ′ is surjective if Im(f) = E ′. Another way to
say it is that for all x′ ∈ E ′, the equation f(x) = x′ has at least one

solution x ∈ E.

We say that f is injective if

for all x1, x2 ∈ E, f(x1) = f(x2) ⇒ x1 = x2.

In other words, f is injective if for all x′ ∈ E, the equation f(x) = x′

has at most one solution x ∈ E.

We say that f : E → E ′ is bijective if it is injective and surjective. In
other words, f is bijective if for all x′ ∈ E, the equation f(x) = x′ has
exactly one solution x ∈ E.

One can show that f is bijective if and only if there exists a function
g : E ′ → E satisfying

g(f(x)) = x for all x ∈ E, and f(g(x′)) = x′ for all x′ ∈ E ′

The map g is unique in this case, and denoted by f−1. If f is bijective,
then f−1 is bijective as well and (f−1)−1 = f .

Definition. A ring homomorphism is a function φ : R → R′, where R
and R′ are rings, such that for all a and b in R,

i) φ(1) = 1 ii) φ(a+ b) = φ(a) + φ(b) iii) φ(a.b) = φ(a).φ(b).

Note that the operations + and . on the left of the equations are the
operations in R and the operations on the right are the operations in
R′. Similarly, i) should really be written φ(1R) = 1R′ .

Exercises:

1) If φ : R → R′ is a ring homomorphism, then Im(φ) is a subring of
R′.

2) If φ1 : R1 → R2, φ2 : R2 → R3, then φ2 ◦ φ1 : R1 → R3 is a ring
homomorphim as well.

Examples.
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(1) Each of the inclusions Z ⊆ Q ⊆ R ⊆ C is a ring
homomorphism. An inclusion is injective, but not surjective in
general.

(2) More generally, if S is any subring of R, then the inclusion of
S in R is an injective ring homomorphism.

(3) If R1 and R2 are rings, the projection maps π1 : R1 ×R2 → R1

and π2 : R1 ×R2 → R2, given by π1((r1, r2)) = r1,
π2((r1, r2)) = r2, are ring homomorphisms. Both are
surjective, but not injective (check it!).

(4) The map m ∈ Z 7→ m ∈ Z /nZ is a ring homomorphism. It is
surjective, but not injective (check it!).

Proposition 2.1. If φ : R → R′ is a ring homomorphism then

(1) φ(0R) = 0R′

(2) φ(−a) = −φ(a) for all a ∈ R.
(3) If a ∈ R∗, then φ(a) ∈ R

′∗ and we have

φ(a)−1 = φ(a−1).

In particular, φ : R → R′ restricts to a group homomorphism
φ : R∗ → R

′∗.

Proof. For (1), note that φ(0R) + φ(0R) = φ(0R + 0R) = φ(0R), now
add −φ(0) to each side of this equation. For (2), we have

φ(−a) + φ(a) = φ((−a) + a) = φ(0R),

the first equality coming from the fact that φ is a ring homomorphism.
But by (1), φ(0R) = 0R, so φ(−a) + φ(a) = 0R. Now add −φ(a) to
each side. For (3), if ainR

∗, we have

φ(aa−1) = φ(a−1a) = φ(1R) = 1R′ .

Since φ is a ring isomorphism, we get

φ(a)φ(a−1) = φ(a−1)φ(a) = 1R′ .

By definition of a unit, the equalities above show that φ(a−1) is a unit
with inverse φ(a)−1. The last statement is clear. �

Definition. A ring homomorphism φ : R → R′ is called an isomor-
phism if it is bijective. In this case, the inverse of φ, denoted by φ−1 is
necessarily a ring homomorphism (and then a ring isomorphism!).

Indeed

φ−1(1R′) = φ−1 ◦ φ(1R) = 1R,

and if x and y are elements of R′, let φ−1(x) = a, φ−1(y) = b. Then

φ(a) = x, φ(b) = y, φ(a+ b) = x+ y, and φ(ab) = xy.
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Therefore

φ−1(x+ y) = φ−1(φ(a+ b)) = a+ b = φ−1(x) + φ−1(y)

and
φ−1(xy) = φ−1(φ(ab)) = a.b = φ−1(x)φ−1(y).

Definition. Let R be a ring, let r ∈ R, and let m ∈ Z. We define m.r
as follows:

m.r =







0R if m = 0
r + · · · + r if m ≥ 1

(−r) + · · · + (−r) if m ≤ −1

where r is summed m times in the second case, and −r is summed −m
times in the third case.

Proposition 2.2. For any ring R, there is a unique ring homomor-
phism ΘR : Z→ R. It is defined by

ΘR(m) = m.1R for all m ∈ Z .

Proof. If φ : Z→ R is a ring homomorphism, then we have by definition
φ(1) = 1R. In particular, for each m > 0, we get

φ(m) = φ(1R + . . .+ 1R) = φ(1R) + . . .+ φ(1R) = m.1R

Also, by the previous proposition, we have φ(0) = 0R. Hence we get

φ(m) = m.1R for all m ≥ 0.

Now if m < 0, then φ(m) = φ(−(−m)) = −φ(−m). Since −m > 0,
the previous case gives

φ(m) = −(−m).1R.

Notice now that we have

(−m).1R +m · (−1R) = (1R + . . .+ 1R) + ((−1R) + . . .+ (−1R))
= (1R + (−1R)) + . . .+ (1R + (−1R))
= 0R + . . .+ 0R

= 0R.

This implies easily that we have

−((−m).1R) = (−m).(−1R).

Therefore, we get

φ(m) = −m.(−1R) = m.1R,

the last equality coming from the definition of m.1R (since m < 0).

Hence we proved that φ(m) = m.1R = ΘR(m) for all m ∈ Z. Now it
remains to show that this function ΘR is indeed a ring homorphism.
We know that ΘR(1) = 1R already. We need to check the equalities

(n+m).1R = n.1R +m.1R, nm.1R = (n.1R)(m.1R), for all n,m ∈ Z
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This is not difficult but extremely tedious, so we are skipping this part
of the proof and leave it to the courageous reader. �

Let R be a commutative ring. There is an injective homomorphism
from R into the polynomial ring R[X] sending r ∈ R to the constant
polynomial whose only term is in X0 with coefficient r. We shall iden-
tify r with this constant polynomial, i.e. we view R as a subring of
R[X].

Proposition 2.3. Let R and R be commutative rings, let f : R → R′

be a homomorphism and let y ∈ R′. Then there is a unique homorphism
ψf,y : R[X] → R′ such that

ψf,y(a) = f(a) for all a ∈ and ψf,y(X) = y.

It is defined by

ψf,y

(

∑

i

aiX
i

)

=
∑

i

f(ai)y
i.

Moreover, every homomorphism R[X] → R′ is obtained in this way.

Proof. Define ψf,y by

ψf,y

(

∑

i

aiX
i

)

=
∑

i

f(ai)y
i.

Clearly we have ψf,y(a) = f(a) for all a ∈ and ψf,y(X) = y (Check

it! This uses the fact that f(0R) = 0R′ and f(1R) = 1R′). Let us check
that this is a ring homomorphism:

We have ψ(1R) = f(1R) = 1R′ . Moreover,

ψf,y(
∑

i

aiX
i +
∑

i

biX
i) = ψf,y(

∑

i

(ai + bi)X
i) =

∑

i

f(ai + bi)y
i

Since f is a ring homomorphism, we get

ψf,y(
∑

i

aiX
i+
∑

i

biX
i) =

∑

i

(f(ai)+f(bi))y
i =

∑

i

f(ai)y
i+
∑

i

f(bi)y
i,

hence

ψf,y(
∑

i

aiX
i +
∑

i

biX
i) = ψf,y(

∑

i

aiX
i) + ψf,y(

∑

i

biX
i)

Finally, we have

ψf,y((
∑

i

aiX
i).(
∑

i

biX
i)) = ψf,y(

∑

i

(
∑

j+k=i

aj.bk)X
i) =

∑

i

f(
∑

j+k=i

aj.bk)y
i
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Since f is a ring homomorphism, we obtain

ψf,y((
∑

i

aiX
i).(
∑

i

biX
i)) =

∑

i

∑

j+k=i

f(aj).f(bk)y
i = (

∑

i

f(ai)y
i)(
∑

i

f(bi)y
i),

hence

ψf,y((
∑

i

aiX
i).(
∑

i

biX
i)) = ψf,y(

∑

i

aiX
i).ψf,y(

∑

i

biX
i)

It is unique, because for any such other ring homomorphism φ satisfying
the conditions φ(a) = f(a) for all a ∈ R, and φ(X) = y, we have (since
we have a ring homorphism)

φ(
∑

i

aiX
i) =

∑

i

φ(ai)(φ(X))i =
∑

i

f(ai)y
i = ψf,y

(

∑

i

aiX
i

)

,

and therefore φ = ψf,y.

To prove that any homomorphism ϕ : R[X] → S is obtained in this
way, set f = ϕ|R (the restriction of ϕ to R) and y = ϕ(X). Since ϕ is
a ring homomorphism, f : R → R′ is a ring homomorphism (do you

see why?).

We have just seen that

φ(
∑

i

aiX
i) =

∑

i

φ(ai)(φ(X))i.

Now by definition of f and y, this rewrites

φ(
∑

i

aiX
i) =

∑

i

f(ai)(y)
i = ψf,y(

∑

i

aiX
i).

Hence ϕ = ψf,y. This concludes the proof. �

Examples.

(1) We can apply this proposition to R = R′, f = IdR and
y = r ∈ R. We then get a morphism called the evaluation at r.
In this case, the image of a polynomial P ∈ R[X] is commonly

denoted by P (r). If P =
∑

i

aiX
i ∈ R[X] and r ∈ R, we have

P (r) =
∑

i

air
i, so this is just taking the value of P at X = r.

In other words, for a given r ∈ R, the map

R[X] → R,P :=
∑

i

aiX
i 7→ P (r) :=

∑

i

air
i

is a ring homomorphism.
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(2) If f : R → R′ is a ring homomorphism, we can also view f as
a morphism f : R → R′[X], since R′ ⊂ R′[X]. Setting
y = X ∈ R′[X] and applying the previous proposition, we
obtain a ring homomorphism ψ : R[X] → R′[X] such that

ψ(
∑

i

aiX
i) =

∑

i

f(ai)X
i.

In particular, for any integer n ≥ 2, we have a ring
homomorphism ψ : Z[X] → Z /nZ[X] satisfying

ψ(
∑

i

aiX
i) =

∑

i

aiX
i.

It is called the reduction modulo n; the image of P is denoted
in general by P .

For example, if P = 3X3 + 2X2 −X + 5 ∈ Z[X], we have

P = 2X2 −X + 2 = −X2 −X − 1 ∈ F3[X]

and

P = X3 −X + 1 = X3 +X + 1 ∈ F2[X].

Recall that Fp = Z /pZ for a prime number p.

Let us come back to the general properties of ring homomorphisms.

Definition. Let R,R′ be arbitrary rings. If φ : R → R′ is a ring
homomorphism, define ker(φ), the kernel of φ, to be

ker(φ) = {x ∈ R | φ(x) = 0R′}.
Proposition 2.4. A homomorphism φ : R → R′ is injective if and only
if ker(φ) = {0}.

Proof. Suppose φ is injective. Clearly {0} ⊆ ker(φ), and if a ∈ ker(φ),
then φ(a) = 0 = φ(0), so by injectivity of φ, a = 0. Conversely,
suppose ker(φ) = {0}. If φ(a) = φ(b), then φ(a− b) = φ(a)−φ(b) = 0,
so (a− b) ∈ ker(φ) = {0}, and hence a = b. �

Examples.

(1) The kernel of π1 : (r1, r2) ∈ R1 ×R2 7→ r1 ∈ R1 is
ker(π1) = {0} ×R2.

(2) The kernel of m ∈ Z 7→ m ∈ Z /nZ is nZ. Do you see why ?
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3. Ideals and factor rings.

3.1. Definitions and first properties.

Definition. A subset I of a ring R is called an ideal if

(i) I is an additive subgroup of R, that is 0 ∈ I and for all a, b ∈ I,
a+ b ∈ I and −a ∈ I,

(ii) for any a ∈ I and any r ∈ R, a.r ∈ I and r.a ∈ I.

Proposition 3.1. Let φ : R → S be a ring homomorphism. Then
ker(φ) is an ideal of R.

Proof. Let a and b be elements of ker(φ). Then φ(a±b) = φ(a)±φ(b) =
0, so a± b ∈ ker(φ), giving i). For ii), φ(a.r) = φ(a).φ(r) = 0.φ(r) = 0,
and similarly the other way around. �

Examples.

- The set {0} is an ideal in any ring R. (Either check the properties,
or note that it is the kernel of the identity map.) The set R is an
ideal in R (check definition, or as kernel of the map from R to the
trivial ring).

- Let I be an ideal of Z. If I is not the zero ideal, it contains some
element greater than zero. Let n be the smallest positive element of
I. We claim that I = nZ = {nm,m ∈ Z}.
Indeed, since n ∈ I and I is an ideal of Z, we have nZ ⊂ I. Now if
ℓ ∈ I, we can write ℓ = mn+ ℓ′ with 0 ≤ ℓ′ < n (Euclidean division of
integers). Hence ℓ′ = ℓ−mn ∈ I, since I is an ideal. Then ℓ′ = 0,
otherwise we would have a positive element of I smaller than n.
Hence ℓ = mn; and so I ⊂ nZ. Conversely, it is a good exercise to
show that nZ is an ideal of Z.

Hence we get

Proposition 3.2. The ideals of Z are exactly the sets
nZ = {mn : m ∈ Z}, where n ≥ 0.

Proposition 3.3. The intersection of a family of ideals of a ring R is
an ideal of R.

Proof. Let Λ be an indexing set for the family, and write Iλ for the
ideals, where λ ∈ Λ. Let I be the intersection of the Iλ. Then x is in
I if and only if x is in each Iλ. If a, b ∈ Iλ for all λ, then a+ b ∈ Iλ for
all λ, and hence if a, b ∈ I, so is a + b. Similarly, if r ∈ R and a ∈ Iλ
for all λ, then r.a, a.r ∈ Iλ for all λ, and so if r ∈ R and a ∈ I, then
r.a and a.r are in I. �
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Definition. If A is a subset of a ring R, then (A), the ideal generated
by A, is the smallest ideal of R containing A. Equivalently, (A) is the
intersection of all ideals containing A.

If A = {a1, · · · , as} is a finite subset of R, we will write (a1, · · · , as)
instead of ({a1, · · · , as}). An ideal generated by one element is called
a principal ideal.

Proposition 3.4. Let R be a ring and let A be a subset of R. Then

(A) = {
n
∑

i=1

riaisi, for some n ≥ 1, ai ∈ A, ri, si ∈ R.}

In particular, (a) = {ras, r, s ∈ R}.

To see this, check that elements of this form do form an ideal that
contains A, and that any ideal containing A contains these elements.

Remarks: If R is a commutative ring, this simplifies to give

(A) = {
n
∑

i=1

ai.ri, n ≥ 1, ri ∈ R, ai ∈ A}.

Similarly, in a commutative ring R the principal ideal (a) is

(a) = {r.a, r ∈ R} = {a.r, r ∈ R}
This last equation could be taken as the definition of (a) in a commu-
tative ring.

Notation: If a ∈ R, we denote by aR the set

{a.r, r ∈ R}

Therefore if R is commutative, then

(a1, · · · , as) = a1R + · · · + asR = {a1.r1 + · · · + asrs, ri ∈ R}

In particular, if R is commutative, a ideal I is principal if and only if
I = aR for some a ∈ R.

Warning: If R is not commutative, this is not true anymore.

Examples.

- If R = Z, then (2) = 2Z.

- If R = Z, then (15, 3) = 15Z+3Z = {15m+ 3n,m, n ∈ Z}. This
ideal is principal, since one can easily show that 15Z+3Z = 3Z.

- If R = Z[X], then
(2, X) = 2Z[X] +X Z[X] = {2P (X) +XQ(X), P,Q ∈ Z[X]}. One
can show that this ideal is not principal.
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- If R = M2(C) and a =

(

0 1
0 1

)

, then the set aR is NOT an ideal

of R. In fact aR = {
(

x y
x y

)

, x, y ∈ C}, so

(

1 0
0 0

)(

0 1
0 1

)

=

(

0 0
1 0

)

/∈ aR

and thus axiom (ii) is not satisfied.

Proposition 3.5. Let I be an ideal of R. Then I = R if and only if I
contains a unit.

Proof. If I = R, then I contains 1, which is a unit. Conversely, let u ∈ I
be a unit. Then there exists u−1 ∈ R, and so 1 = u−1.u ∈ R.I = I.
But then for any r ∈ R, r = r.1 ∈ I, since I is an ideal. �

Proposition 3.6. If R is a field, any homomorphism φ : R → R′ is
injective, unless R′ is the trivial ring.

Proof. It suffices to check that ker(φ) = {0}. Assume that ker(φ)
contains a non-zero element a ∈ R. Since a 6= 0 and R is a field, a
is a unit. Since ker(φ) is an ideal, we get ker(φ) = R. In particular,
1 = φ(1) = 0 ∈ R′, so R′ is the trivial ring. �

Recall now that there exists a unique ring homomorphism ΘR : Z→ R.

Definition. For any ring R, the characteristic of R is defined to be
the unique integer c ≥ 0 such that ker(ΘR) = (n) = cZ.

It is denoted by char(R).

In other words, the characteristic of R is 0 if the equation n.1R = 0
has no solution n 6= 0, n ∈ Z, and it is the smallest positive solution c
of the equation n.1R = 0 if this equation has a non zero solution.

Moreover in this last case, we have

For all n 6= 0, n ∈ Z, n.1R = 0R ⇒ char(R)|n.

For example, char(Q) = 0, char(Z /2Z) = 2.

Proposition 3.7. If R is an integral domain, the characteristic of R
is either zero or a prime number.

Proof. Suppose R is a ring whose characteristic c is neither zero nor a
prime. Then either c = 1, or c = l.m with l,m ≥ 2. If c = 1, then
1 = 0 in R, so R is the trivial ring and hence is not an integral domain.
If c = l.m, l,m ≥ 2, then l.1R 6= 0, m.1R 6= 0, but (l.1R).(m.1R) =
n.1R = 0, so R is not an integral domain either. �
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Warning: The converse is not true! For example Z /2Z×Z /2Z has
characteristic 2, but it is not an integral domain since it has zero divi-
sors (could you find some?).

3.2. Factor rings. The definition of an ideal was inspired by the list
of properties enjoyed by kernels of ring homomorphisms. Compare this
with the definition of a normal subgroup in group theory. Just as in
group theory, where the quotient of a group by any normal subgroup
may be defined, it turns out that we can define a factor ring.

Let R be a ring, and I ⊂ R an ideal of R. Let r, s ∈ R. Say that r is
congruent to s modulo I,

r ≡ s mod I if r − s ∈ I.

This is an equivalence relation, so R splits into disjoint equivalence
classes under it. Notice that if r ∈ R, its equivalence class, denoted by
r is nothing but the set r + I := {r + a, a ∈ I}.
We will write R/I for the set of equivalence classes:

R/I = {r : r ∈ R}.

We define an addition and a multiplication on R/I by

r + s = r + s, r.s = r.s.

Proposition 3.8. The operations described above are well-defined (i.e.,
do not depend on the choice of a representative of the equivalence class
r). The set R/I is a ring with these operations, with zero element 0,
unity 1, and negatives given by −r = −r, and is called the factor ring.

Proof. Check that + and . are well defined:

r = r′ if and only if r = r′ + λ for some λ ∈ I.

Similarly, s = s′ if and only if s = s′ + µ for some µ ∈ I. To show that
+ and . are well defined, it suffices to show that r + s = r′ + s′, and
r.s = r′.s′, but

(r + s) − (r′ + s′) = (r − r′) + (s− s′) = λ+ µ ∈ I and

r.s− r′.s′ = (r′ + λ).(s′ + µ) − r′.s′ = r′.µ+ λ.s′ + λ.µ ∈ I.

Given that the operations are well-defined, it’s easy to check that R/I
is a ring, because the axioms follow immediately from those in R, for
example to check associativity of ., we want to show that (a.b).c =
a.(b.c). The left hand side is the equivalence class containing (a.b).c
and the right hand side is the equivalence class containing a.(b.c), but
these are equal, so the classes containing them are too. �
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Remark: It is easy to check that R/I is the trivial ring if and only if
I = R.

Definition. The canonical projection is the map

π : R → R/I, r 7→ r

This is a surjective ring homomorphism with ker(π) = I (Check it!).

The rest of this section is devoted to the study of ring homomorphisms
R/I → R′. Let’s start with an illustrative problem:

Problem: Describe all the ring homomorphisms ϕ : Z /2Z→ Z.

Let’s try to analyze the problem. If ϕ is such a ring homomorphism,
then by definition ϕ(1) = 1, and ϕ(0) = 0. Since Z /2Z = {0, 1}, we
could say that we already described all the possible homomorphisms.
In fact, there is just this one!

Yes, but there is an hidden difficulty. Elements of Z /2Z are equivalence
classes , and therefore can be represented by several different elements.
For example, 0 = 2 = 4 = · · · .
So we should get ϕ(0) = ϕ(2). But ϕ(2) = ϕ(1+1) = ϕ(1)+ϕ(1), and
therefore we get 0 = 2 in Z, which is a contradiction !

Thus there is NO homomorphism ϕ : Z /2Z→ Z.

The crucial thing to understand is that constructing the quotient R/I is
in some sense adding new relations between the elements of R. Roughly
speaking, you add the relations a = 0 whenever a ∈ I. For example,
you construct Z /2Z from Z by imposing the extra relation ”2=0” in
some sense.

Any homomorphism ϕ : R/I → R′ has to respect these new relations
to be well-defined, which was not the case in the previous example.

A natural way to construct such a ϕ would be to start from a ring
homomorphism ψ : R → R′, and to set ϕ : R/I → R′, r 7→ ψ(r). It is
really easy to see that ϕ satisfies all the necessary properties to be a
ring homomorphism (because ψ satisfies them), BUT such a ϕ is not
necessarily a well-defined map !

Indeed, let r ∈ R/I. Let s ∈ R such that r = s, that is s is equivalent
to r. Then s − r ∈ I by definition of the equivalence relation , so
s = r + a, a ∈ I.

Now ϕ(r) = ϕ(s) = ϕ(r + a), and so ϕ(r) = ϕ(r) + ϕ(a). Hence we
get ϕ(a) = 0, that is ψ(a) = 0 for all a ∈ I.

Therefore, if it happens that this last condition is not satisfied, then
we could get two different images by ϕ for the same element of R/I !
For example, if ψ : m ∈ Z 7→ m ∈ Z, and ϕ : m ∈ Z /2Z 7→ m ∈ Z,
then we have 0 = ϕ(0) = ϕ(2) = 2 !!!
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However, if ψ(a) = 0 for all a ∈ I, then we get a well-defined map.

Therefore, we have almost proved the following result:

Proposition 3.9. Let R,R′ be two rings, and let I be an ideal of R.
Let ψ : R → R′ be a ring homomorphism such that ker(ψ) ⊃ I, and let
π : R → R/I the canonical projection.

Then there exists a unique well-defined ring homomorphism

ψ : R/I → R′

such that ψ ◦ π = ψ, that is such that ψ(r) = ψ(r) for all r ∈ R.

Proof. If such ψ exists, then it is unique because it has to be defined
by the formula ψ(r) = ψ(r) for all r ∈ R. Now it is enough to check
that the map defined by this formula is a well-defined homomorphism.
If r = s ∈ R/I, then s = r + a for some a ∈ I, and then ψ(s) =
ψ(r + a) = ψ(r) + ψ(a).

Hence ψ(s) = ψ(r) + ψ(a). Since a ∈ I ⊂ ker(ψ), we get ψ(s) = ψ(r),
and therefore ψ(s) = ψ(r), so ψ is well-defined. The fact that it is a
ring homomorphism is left to the reader. �

Remark: In particular, any ring homomorphism ψ : R → R′ induces
a ring homomorphism ψ : R/ ker(ψ) → R′.

Lemma 3.10. Let ψ : R → R′ be a ring homomorphism. Then the
ring homomorphism ψ : R/ ker(ψ) → R′ is injective.

Proof. It is enough to prove that its kernel is trivial; but ψ(r) = 0 ⇐⇒
ψ(r) = 0 ⇐⇒ r ∈ ker(ψ) ⇐⇒ r = 0. �

Example. Let R be a ring, and let c = char(R). If c = 0, then
ΘR : Z→ R is injective, and then Z can be identified to a subring of
R. If c > 0, then ΘR : Z /cZ→ R is injective by the previous lemma
(because ker(ΘR) = cZ) and therefore Z /cZ can be identified to a
subring of R.

Corollary 3.11 (First isomorphism theorem). Let ψ : R → R′ be a
ring homomorphism. Then we have a ring isomorphism

R/ ker(ψ) ≃ Im(ψ)

given by r ∈ R/ ker(ψ) 7→ ψ(r) ∈ R′.

Proof. By the previous lemma, the map ψ : R/ ker(ψ) → R′ is an
injective ring homomorphism. Therefore it induces an isomomorphism
between R/ ker(ψ) and its image. By definition, its image consists of
all the elements of R′ of the form ψ(r) for some r ∈ R, that is exactly
Im(ψ), so we are done. �



RINGS AND FIELDS 29

Examples.

(1) If R is any ring, the first isomorphism theorem applied to
ψ = IdR gives that R/(0) ≃ R (do you see why?).

(2) Let ψ : P ∈ Q[X] 7→ P (i) ∈ C. We saw in the exercise sheets
that we have ker(ψ) = (X2 + 1) (the ideal of Q[X] generated
by X2 + 1), and Im(ψ) = Q[i]. Therefore, we get an
isomorphism

Q[X]/(X2 + 1) ≃ Q[i].

(3) Let ψ : P ∈ Z[X] 7→ P ∈ F2[X]. We saw in the exercise sheets
that we have ker(ψ) = (2) (the ideal of Z[X] generated by 2),
and Im(ψ) = F2[X]. Therefore, we get an isomorphism

Z[X]/(2) ≃ F2[X].

Example. Let K be a field, and let’s try to identify the factor ring
K[X]/(X).

The best way to do this is to find a ring homorphism ψ : K[X] → R′,
where R′ is a suitable ring, such that ker(ψ) = (X), and use the first
isomorphism theorem.

In particular, we need to have ψ(X) = 0. Let us consider

ψ : P ∈ K[X] 7→ P (0) ∈ K.

We have ψ(P ) = 0 ⇐⇒ P (0) = 0 ⇐⇒ P is a multiple of X (the
last equivalence is easy). Hence ker(ψ) = (X). Now in order to use
the first isomorphism theorem, we need to identify the image of ψ.
But here ψ is surjective. Indeed, for any a ∈ K, we have ψ(a) = a,
where a is viewed as a constant polynomial on the left-hand side of
the equation.

Hence, applying the first isomorphism theorem to ψ gives

K[X]/(X) ≃ K.

From now on, all the rings will be commu-
tative!!!!

3.3. Maximal and prime ideals.

Definition. Let R be a ring.

An ideal p is called a prime ideal if p 6= R and for every a, b ∈ R, we
have

a.b ∈ p ⇒ a ∈ p or b ∈ p

An ideal m is called a maximal ideal if m 6= R and whenever an ideal I
satisfies m ⊆ I ⊆ R, either I = m or I = R.



30 RINGS AND FIELDS

Proposition 3.12. 1) An ideal p of R is prime if and only if R/p is
an integral domain.

2) An ideal m of R is maximal if and only if R/m is a field.

Proof. 1) Assume that R/p is an integral domain. In particular, this is
not the trivial ring, and therefore p 6= R. Now let a, b ∈ R such that
a.b ∈ p. Then we have a.b = a.b = 0. Since R/p is an integral domain,
we get that a = 0 or b = 0, which exactly means that a ∈ p or b ∈ p.
Therefore, p is a prime ideal.

Conversely, if p is a prime ideal, then p 6= R, so R/p is not the trivial
ring. Now, if a.b = 0 in R/p, then a.b = 0, that is a.b ∈ p. Since p is a
prime ideal, we get a ∈ p or b ∈ p, that is a = 0 or b = 0. Thus R/p is
an integral domain.

2) Assume that R/m is a field. Once again, the factor ring is not the
trivial ring in this case, so m 6= R. Let I be an ideal of R satisfying
m ⊂ I ⊂ R, and assume that I 6= m. We have to show that I = R.
Let a ∈ I, a /∈ m. Then a 6= 0, so a is invertible by assumption.
Therefore, there exists b ∈ R/m such that a.b = 1. Thus 1 − a.b = 0,
so 1 − a.b ∈ m ⊂ I. Since a ∈ I and I is an ideal, a.b ∈ I, so
1 = (1 − a.b) + a.b ∈ I. Hence I contains a unit, so I = R, and m is a
maximal ideal.

Conversely, if m is a maximal ideal, then m 6= R, so R/m is not the
trivial ring. Now let a ∈ R/m, a 6= 0. Thus a /∈ m. Let I = R.a + m;
it is an ideal of R (in fact, this is the ideal generated by a and the
elements of m). Then m ⊂ I and I 6= m, since a ∈ I, a /∈ m. Since m is
a maximal ideal, we then get I = R. Therefore, I contains 1, so there
exists r ∈ R and m ∈ m such that 1 = r.a+m. Thus 1 = r.a and a is
therefore a unit.

�

Corollary 3.13. Every maximal ideal is prime.

Proof. Every field is an integral domain. �

Remark: Using Zorn’s lemma, which is equivalent to the Axiom of
Choice, it can be shown that any proper ideal of a ring R is contained
in a maximal ideal.

Examples.

(1) If K is a field and α ∈ K, the ideal (X − α) is maximal in
K[X], since the corresponding quotient ring is isomorphic to
K, as we will see in the exercises sheets.

(2) If p is a prime number, (p) is maximal in Z, because the factor
ring Z /pZ is a field.
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(3) (1 + i) is maximal in Z[i]: one can show that the quotient is
isomorphic to Z /2Z (see exercise sheets).

(4) (0) is a prime ideal of Z, or of any integral domain R. Note
that in Z, (0) ⊂ (p), so (0) is prime but not maximal.

(5) The ideal (X) in Z[X], and the ideal (p) in Z[X], since the
respective factor rings are isomorphic to Z and Fp[X], which
are integral domains. Neither of these is maximal, and both
are contained in (p,X) which is a maximal ideal (see exercise
sheets).

(6) The ideals (0), (X), (X,Y ), (X,Y, Z) are all prime ideals in
the ring Q[X,Y, Z], because the respective factor rings are
isomorphic to Q[X,Y, Z], Q[Y, Z], Q[Z] and Q, which are all
integral domains. Only (X,Y, Z) is maximal.
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4. The field of fractions of an integral domain.

Let R be an integral domain. Let S be the set R × (R − {0}). Define
an equivalence relation ∼ on S by (a, b) ∼ (c, d) if and only if ad = bc.

Let’s check that this is really an equivalence relation. First, we have
(a, b) ∼ (a, b), since ab = ba (recall that R is commutative). Now if
(a, b) ∼ (c, d), we have ad = bc, and so cb = da, which means that
(c, d) ∼ (a, b). Finally, if (a, b) ∼ (c, d) and (c, d) ∼ (e, f) then ad = bc
and cf = de, so adf = bcf = bde. Thus d(af − be) = 0, but d 6= 0 so
af = be since R is an integral domain.

Denote the equivalence class of (a, b) by
a

b
.

Therefore,
a

b
=
c

d
⇐⇒ ad = bc.

We define operations on S/ ∼ by

a

b
+
c

d
=
ad+ bc

bd
,

−a
b

=
−a
b
,

and
a

b
.
c

d
=
ac

bd
.

We also set

0S/∼ :=
0

1
, 1s/∼ =

1

1

Notice that the definitions make sense since b 6= 0 and d 6= 0 ⇒ bd 6= 0
(R is integral domain). We now check that these operations are well-
defined.

For example, if
a

b
=
a′

b′
and

c

d
=
c′

d′
, we have ab′ = ba′, cd′ = dc′, so

(ad+ bc)(b′d′) = adb′d′ + bcb′d′ = ba′dd′ + bb′c′d = (a′d′ + b′c′)(bd),

which means that

ad+ bc

bd
=
a′d′ + b′c′

b′d′
, that is

a

b
+
c

d
=
a′

b′
+
c′

d′
.

The cases of . and − are similar but easier, and left to the reader.

One can check that S/ ∼ is a commutative ring, which is not the trivial
ring, with the above operations. We won’t do it here. Now suppose

that
a

b
∈ S/ ∼, a

b
6= 0

1
.
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This means that a 6= 0 (Indeed
a

b
=

0

1
⇐⇒ a.1 = 0.b ⇐⇒ a = 0).

Then we can consider
b

a
, and we have

a

b
.
b

a
=

1

1
, so every non-zero

element of S/ ∼ is a unit.

Hence S/ ∼ is a field. Now we write KR for S/ ∼.

Definition. The field of fractions of an integral domain R is the field
KR defined above.

Examples.

(1) KZ = Q
(2) If K is a field and R = K[X], then KR = K(X), the field of

rational fractions in one variable.
(3) If R = Z[

√
d] or Z[1+

√
d

2
]then KR = Q[

√
d] (it is a good

exercise to check it).

Lemma 4.1. The map i : R → KR given by i(r) = r/1 is an injective
ring homomorphism.

Proof. If i(r) = i(s), then (r, 1) ∼ (s, 1), so r.1 = 1.s, and thus r = s.
Hence it is injective. This is also a ring homomorphism. Indeed:

i(r + s) =
r + s

1
=
r

1
+
s

1
= i(r) + i(s),

i(rs) =
rs

1
=
r

1
.
s

1
= i(r).i(s),

i(1R) =
1R

1R

= 1KR
.

�

Corollary 4.2. If F is a field, then i induces an isomorphism F ≃ KF .

Proof. We already know that i is an injective ring homomorphism, so
we only need to prove that it is surjective. Let a

b
∈ KF . Since b 6= 0

and F is a field, b is invertible in F . Thus we have

a

b
=
ab−1

bb−1
=
ab−1

1
= i(ab−1),

hence i is surjective. �

Proposition 4.3. Let F be a field, and let θ : R → F be an injective
ring homomorphism, where R is an integral domain, and F is a field.

Then there is a unique homomorphism θ̃ : KR → F such that θ̃(
a

1
) =

θ(a), and this homomorphism is injective.

It is defined by θ̃(
a

b
) = θ(a)(θ(b))−1.
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Proof. Define θ̃(
a

b
) = θ(a)(θ(b))−1. We first check this is well-defined: if

a

b
=
c

d
, then ad = bc, so θ(ad) = θ(bc). Therefore, θ(a)θ(d) = θ(b)θ(c),

and θ(a)(θ(b)−1) = θ(c)(θ(d))−1.

Now we check that θ̃ is a ring homomorphism:

θ̃
(a

b
.
c

d

)

= θ(ac)(θ(bd))−1 = θ(a)(θ(b))−1θ(c)(θ(d))−1 = θ̃(
a

b
).θ̃(

c

d
).

The other properties to check are left to the reader as an easy exercise.

Finally, we check uniqueness: If φ is another homomorphism KR → F

extending θ, then φ(
r

1
) = φ(i(r)) = θ(r). Now for all r ∈ R and

s ∈ R− {0}, r
s

=
r

1
.
1

s
, and

φ(
r

s
) = φ(

r

1
).φ(

1

s
) = φ(

r

1
)(φ(

s

1
))−1 = θ(r)(θ(s))−1 = θ̃(r/s).

Finally, by a previous result, θ̃ is injective since F is not the trivial
ring. �
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5. Factorisation

5.1. Prime and irreducible elements.

Definition. For a, b ∈ R, we say that a divides b, denoted by a|b, if
there exists λ ∈ R such that b = aλ, or equivalently if (b) ⊆ (a).

Remark. The crucial point in this definition is that λ ∈ R.

Examples.

(1) 2 does not divide 3 in Z. Otherwise we would have 3 = 2λ for
λ ∈ Z. But this implies that λ = 3

2
, which is not in Z.

(2) 2|3 in Q since 3 = 2.3
2

(3) 2 does not divide 1 + i in Z[i]. Otherwise, we would have
1 + i = 2.z, z ∈ Z[i]. Writing z = a+ bi, a, b,∈ Z, we obtain
1 + i = 2a+ 2bi, so in particular 1 = 2a in Z, which is
impossible.

(4) 1 + i|2 in Z[i] since 2 = (1 + i)(1 − i), and 1 − i ∈ Z[i].

Definition. For a, b ∈ R, we say that a and b are associate if a|b and
b|a, or equivalently, if (a) = (b).

Being associate is an equivalence relation, and the equivalence classes
are partially ordered by divisibility.

Examples.

(1) 2 and 1 + i are not associate in Z[i] since 2 does not divide
1 + i in Z[i].

(2) 10 and −10 are associate in Z.
(3) 1 − i and 1 + i are associate in Z[i] since we have

1 + i = i(1 − i) and 1 − i = −i(1 + i).
(4) X and 2X are associate in Q[X] but not in Z[X] (do you see

why ?).

Lemma 5.1. If R is an integral domain, then a and b are associate if
and only if a = bu for some unit u in R.

Proof. If a = bu, u ∈ R∗, then au−1 = b. So b|a and a|b (in this direction
we didn’t need to assume that R is an integral domain). Conversely,
if a = bλ and b = aµ, then a = aµλ, so a.(1 − λµ) = 0. If a = 0,
then b = 0 as well, in which case a = 1.b). If a 6= 0, then 1 − λµ = 0
since R is an integral domain. Hence λµ = 1, and therefore λ and µ
are units. �

Definition. An element π ∈ R is irreducible if π 6= 0, π /∈ R∗, and
whenever π = ab, a, b ∈ R, then either a is a unit or b is a unit.

Example. Any prime number is irreducible in Z.
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Remark 5.2. If π ∈ R is irreducible, then for any u ∈ R∗, uπ is
irreducible.

Indeed, we have uπ 6= 0. Otherwise uπ = 0 implies π = 0, multiplying
by u−1, which is not the case since π is irreducible. Now assume that
uπ = ab, a, b,∈ R. Then π = (u−1a)b, and since π is irreducible, we get
that either u−1a or b is a unit. But if u−1a is a unit, so is uu−1a = a.

Remark 5.3. Irreducible elements do not necessarily exist. For exam-
ple, a field does not contain any irreducible element, since every non
zero element is a unit. It also exists some examples of rings which are
not fields, and which do not have irreducible elements. For example,
the set

O = {z ∈ C | There exists P ∈ Z[X], P 6= 0, P (z) = 0}
can be proven to be a subring of C (Difficult!).

It is a good exercise to check that it is not a field (Hint: 1/2 /∈ O)
and that it does not have any irreducible element (Hint: If z ∈ C, let
y ∈ C such that z = y2. Show that if z ∈ O, then y ∈ O).

Definition. An element π ∈ R is prime if π 6= 0, π /∈ R∗, and whenever
π|ab, a, b ∈ R, then either π|a or π|b.
Example. Once again, any prime number in Z is prime in this new
sense.

Remark 5.4. If π ∈ R is prime, then for all u ∈ R∗, uπ is prime
(Check it!).

Lemma 5.5. Let π ∈ R. Then π is a prime element if and only if (π)
is a non zero prime ideal.

Proof. If π is prime, it is non zero, and therefore (π) is a non zero ideal.
Moreover, (π) 6= R. Otherwise, we would have 1 ∈ (π), and therefore,
we would have an element r ∈ R such that 1 = πr, meaning that
π ∈ R∗. This is not the case since π is prime. Hence (π) 6= R. Now let
a, b ∈ R such that ab ∈ (π). Then π|ab, so either π|a or π|sb, so either
a ∈ (π) or b ∈ (π). Thus (π) is a non zero prime ideal. Conversely,
assume that (π) is a non zero prime ideal. Then π 6= 0. Moreover, π
is not a unit since otherwise we would have (π) = R, which is not the
case since (π) is a prime ideal. Now let a, b ∈ R such that and π|ab.
Then ab ∈ (π), so either a ∈ (π) or b ∈ (π), so either π|a or π|b. Hence
π is a prime element of R. �

Lemma 5.6. Let R be an integral domain. Then every prime element
of R is irreducible.

Proof. Let π be a prime element, and suppose that π = ab. Need to
show that either a or b is a unit. Since π = ab, then π | ab, now by
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primality, either π | a or π | b. Without loss of generality assume π | a.
Then a = πλ for some λ ∈ R, so π = ab = πλb, so π.(1 − bλ) = 0.
Since R is an integral domain and π 6= 0, we get bλ = 1 and hence b is
a unit. �

In general, the notions of prime and irreducible are distinct, as we show
in the following example:

Important example:

Let R = Z[i
√

6]. Recall that R = {z = a + ib
√

6 ∈ C, a, b,∈ Z}. We
claim that the element 2 is irreducible but not prime. To see that, let’s
introduce a function δ : R → Z, defined by δ(a+ ib

√
6) = |a+ ib

√
6|2 =

a2 + 6b2.

By the properties of the modulus, we have δ(z.z′) = δ(z).δ(z′) for all
z, z′ ∈ R. Notice that δ(z) ∈ N for all z ∈ R. Indeed, if we write
z = a+ ib

√
6 for some a, b ∈ Z, then δ(z) = a2 + 6b2 ∈ N.

We start we a simple remark: if z ∈ R∗, then zz′ = z′z = 1 for some
z′ ∈ R. We then get in particular δ(z).δ′(z′) = δ(1) = 1, and since
δ(z), δ(z′) ∈ N, we get δ(z) = 1.

Hence if z ∈ R∗, then δ(z) = 1. In particular 2 is not a unit.

Now suppose that 2 = zz′, for some z, z′ ∈ R. We need to prove that z
or z′ is a unit of R. Applying δ on both sides of the previous equality
gives

δ(2) = 4 = δ(z)δ(z′)

Since δ(z), δ(z′) ∈ N, we get that δ(z) = 1, 2 or 4. Write z = a+ ib
√

6.

Assume first that δ(z) = 2. We have to solve a2 + 6b2 = 2 for a, b,∈ Z.
If |b| ≥ 1, then 4 = a2 + 6b2 ≥ 6b2 ≥ 6, which is a contradiction. Then
b = 0, and therefore a2 = 2. But 2 is not a square in Z.

So the equation δ(z) = 2 has no solution in R, and hence δ(z) = 1 or
4.

Assume first that δ(z) = 1. Therefore a2 +6b2 = 1, and so b = 0 (argue
as before), a = ±1, and so z = ±1 is a unit.

If δ(z) = 4, then δ(z′) = 1, and by the previous point, z′ is a unit of R.

This prove that 2 is irreducible in R.

On the other hand, 2 is not prime in Z[i
√

6], because 2|i
√

6.i
√

6, but
2 6 |i

√
6, as it can be shown easily (check it !).

A similar argument can be used to show that 2 is irreducible but not
prime in Z[i

√
3], since 2 divides the product (1 − i

√
3)(1 + i

√
3) but

does not divide either factor.

5.2. ED, UFD and PID.
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Definition. A ring R is called a unique factorisation domain, or UFD,
if R is an integral domain and

(1) Every a ∈ R that is neither zero nor a unit can be written as a
finite product a = a1 . . . an of irreducible elements of R;

(2) If two such products are equal: a1 . . . an = b1 . . . bm, then m = n,
and there is a permutation σ ∈ Sn such that ai and bσ(i) are associate.

Examples include Z, any field, K[X], K[X1, . . . , Xn]. You will have
seen this already for Z. The other examples will be verified later in the
chapter and the next one.

Proposition 5.7. Let R be a UFD. Then every irreducible element of
R is prime.

Proof. Let π be a irreducible element. Then π 6= 0, π /∈ R∗. it remains
to show that for any element a, b ∈ R such that π|ab, then π|a or π|b.
Write ab = πc for some c ∈ R.

If a = 0 or b = 0, there is nothing to prove. If a is a unit, then we have
πa−1c = b, so π|b. Similarly if b is a unit, then π|a. So assume now
that a and b are both non zero, and are not units. Then we can write
a = π1 · · · πr, b = π′

1 · · · π′
s, where the πi’s are the π′

j’s are irreducible.
We then have

π1 · · · πrπ
′
1 · · · π′

s = πc.

If c is a unit then cπ is irreducible, and uniqueness of the decomposition
into product of irreducible elements implies that cπ is associate to some
πi or π′

j. It easily implies that π|a or π|b.
If c is not a unit, then one can decompose it into products of irreducible
elements as well, namely

c = π′′
1 · · · π′′

t , for some irreducible elements π′′
1 , . . . , π

′′
t ∈ R.

We then have

π1 · · · πrπ
′
1 · · · π′

s = ππ′′
1 · · · π′′

t ,

and uniqueness of the decomposition into product of irreducible ele-
ments implies this time that π is associate to some πi or π′

j, and we
conclude as before. �

Recall that we showed that in any integral domain, prime elements are
always irreducible. Thus in a UFD, prime and irreducible are equiva-
lent. This can be useful to prove that a give ring is NOT a UFD.

Example. Recall that we showed that in Z[i
√

6], 2 is irreducible but
not prime. It follows that Z[i

√
6] cannot be a UFD. Note that

6 = 2.3 = −i
√

6i
√

6 has two distinct expressions as a product of
irreducibles (one can show that 3 is irreducible).
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We now would like to precise the result of the previous proposition.
We start with a lemma.

Lemma 5.8. Let R be an integral domain. Assume that every irre-
ducible element of R is prime. Then for all integers r, s ≥ 1 and all
irreducible elements π1, . . . , πr, π

′
1, . . . , π

′
s ∈ R such that

π1 · · · πr = π′
1 · · · π′

s,

we have r = s and there exists a permutation σ ∈ Sr such that πi and
π′

σ(i) are associate.

Proof. We proceed by induction on r. More precisely, the induction
hypothesis is the following one:

(Hr) If we have an equality

π1 · · · πr = π′
1 · · · π′

s,

with s ≥ r and the π1, . . . , πr, π
′
1, . . . π

′
s are irreducible, then r = s and

there is a permutation σ ∈ Sr such that πi is associate to π′
σ(i).

Assume first that r = 1. We then have

π1 = π′
1 · · · π′

s.

Since π1|π′
1 · · · π′

s, then π1 divides one of the elements π′
j by assumption,

say π′
1 (that we may always assume after renumbering). We then have

π′
1 = uπ1, u1 ∈ R.

Since π′
1 is irreducible, we have π1 ∈ R∗ or u ∈ R∗. Since π1 is irre-

ducible, it is not a unit and so u ∈ R∗. Hence, π1 et π′
1 are associate.

If s = 1, we are done. If s ≥ 2, after simplification by π1 (which is
possible since R is an integral domain), on obtient

1 = uπ′
2 . . . π

′
s.

This implies that π′
2 is a unit, which contradicts the fact that π′

2 is
irreducible. Hence s = 1 and (H1) is proved.

Assume now that (Hr) is true for some r ≥ 1, and let us show that
(Hr+1) is true as well. Let us consider an equality of the type

π1 · · · πr+1 = π′
1 · · · π′

s,

where s ≥ r + 1 ≥ 2. Reasoning as previosuly, we see that π1 is
associate to some π′

j, say π′
1. We then have π′

1 = uπ1, u ∈ R∗, and after
simplification by π1, we get

π2 · · · πr+1 = (uπ′
2)π

′
3 · · · π′

s.

Since uπ′
2 is irreducible, we get by induction r = s and each πi, i ≥ 2 is

associate to a unique π′
j, j ≥ 3 or to uπ′

2, that is associate to a unique
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π′
j, j ≥ 2. Sinceπ1 is associate to π′

1, this concludes the proof of (Hr+1),
and the proof by induction. �

We then have the folowing characterization of UFDs.

Theorem 5.9. Let R be an integral domain. Then R is a UFD if and
only if the two following conditions are satisfied:

(1) Every a ∈ R that is neither zero nor a unit can be written as a
finite product a = a1 . . . an of irreducible elements of R.

(2) Every irreducible element of R is prime.

Proof. A UFD satisfies condition (1) by definition, and condition (2)
by Proposition 5.7. Conversely, an integral domain satisfying (1) and
(2) is a UFD, since the uniqueness of the decomposition of a is ensured
by the previous lemma. �

Definition. Let R be a ring. A complete system of irreducible elements
of R is a set P satisfying the following properties:

1) Every element of P is irreducible

2) Two different elements of P are non-associate

3) Every irreducible element of R is associate to an element of P
Remark 5.10. Such P always exists. Indeed, consider all the equiva-
lence classes of the set of irreducible elements under the relation ’being
associate’, and construct your set P by choosing exactly one element
in each equivalence class. Then by definition, P satisfies 1), 2) and 3).

You have in general infinitely many different choices for P .

Examples. The following sets are complete systems of irreducible

elements for Z:

(1) P = {p, p prime number }
(2) P = {−p, p prime number }
(3) P = {−2, 3, 5, 7, 11, 13, · · · }

Proposition 5.11. Let R be a UFD, and let P be a complete system
of irreducible elements. Then every a ∈ R, a 6= 0 can be written in a
unique way as

a = u
∏

π∈P
πnπ

where u ∈ R∗ and the nπ’s are non-negative integers which are almost
all zero (except a finite number).

Proof. If a is a unit, we just take u = a and nπ = 0 for all π ∈ P. Now
assume that a is not a unit. Since R is a UFD, then a = π′

1 · · · π′
s where

the π′
j’s are irreducible. Now each π′

j is associate to an element of P .
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Since R is an integral domain, this is equivalent to say that π′
j = ujπj

where uj ∈ R∗ and πj ∈ P. Now set u to be the product of the u′js and
collect all the π′

js which are equal. We then get a in the desired form.

To prove uniqueness, let

a = uπn1

1 · · · πnk

k = vπ
′m1

1 · · · π′mr

r ,

where the πi’s (resp. the π′
j’s) are pairwise distinct elements of P , and

u, v ∈ R∗.

One can always assume that r = k and πi = π′
i for all i, renumbering

and writing some terms of the form π0
i or π

′0
j if necessary.

Now if ni 6= mi for some i, then after simplification by a suitable power
of πi , we would obtain an equality of the form

(unit).πs
i .(product of πj’s, j 6= i) = (unit).(product of πj’s, j 6= i)

with s ≥ 1.

So π divides the right hand side. Since R is a UFD and πi is irreducible,
then πi is prime and therefore divides one of the π′

js (it cannot divide
the unit, otherwise πi would be a unit itself, which is not the case since
πi is irreducible). Hence πj = cπi for some j 6= i and c ∈ R. Since πj is
irreducible, it necessarily implies that c is a unit (do you see why?), and
so πj and πi are associate, which is impossible by choice of P . Hence
ni = mi for all i, and we get finally u = v after simplification, hence
the uniqueness is established. �

Examples.

The decomposition obviously depends on the choice of P . Take
R = Z and consider the three previous choices of P :

(1) If P = {p, p prime number }, then 6 decomposes as 6 = 2.3
(2) If P = {−p, p prime number }, then 6 decomposes as

6 = (−2).(−3)
(3) P = {−2, 3, 5, 7, 11, 13, · · · }, then 6 decomposes as

6 = −1.(−2).(3)

Definition. Let R be a ring. If a, b ∈ R, then d ∈ R is called a highest
common factor or h.c.f. of a and b if

(1) d|a and d|b;
(2) Whenever c|a and c|b, then c|d.

Remark 5.12. A h.c.f. does not necessarily exist. For example, one
can show that 9 and 3(2 + i

√
5) do not have any h.c.f. in Z[i

√
5] (this

is not totally immediate).
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If moreover a h.c.f. does exist, it is not unique. Indeed, one may check
that if d is a h.c.f. of a and b, then ud is also a h.c.f. of ab and b for all
u ∈ R∗.

Proposition 5.13. Let R be a UFD, and a, b ∈ R. If (a, b) 6= (0, 0),
then a, b have a h.c.f. It is unique up to multiplication by a unit of R.

Proof. If d and d′ are two h.c.f. of a and b, then d|d′ and d′|d by
definition, so d and d′ are associate, and therefore differ by a unit,
since R is an integral domain. Hence if a h.c.f. of a and b exists, then
it is unique up to multiplication by a unit of R.

Now let us prove the existence. If a = 0, then clearly a h.c.f. of a and
b is b. Similarly, if b = 0, then then clearly a h.c.f. of a and b is a.
(Check it!) Now assume that a and b are both non zero, and let P be
a complete system of irreducible elements of R. Write

a = u
∏

π∈P
πnπ , b = v

∏

π∈P
πmπ

and let d =
∏

π∈P π
kπ , where kπ is the minimum of nπ and mπ. It is

easy to check that d is a h.c.f. of a and b (Do it !). �

Recall that an ideal in a ring R is said to be principal if it can be
generated by a single element.

Definition. A ring R is a principal integral domain or PID if R is an
integral domain and every ideal of R is principal.

Example. The ring Z is a PID, as is any field.

Definition. A ring R is a Euclidean domain or ED if R is an integral
domain and it has a norm function δ : R − {0} → N (remember that
0 ∈ N) such that for all a, b ∈ R − {0}, there exist elements q, r ∈ R
with a = qb+ r and either r = 0 or δ(r) < δ(b).

In this case, we say that R is Euclidean with respect to δ. The elements
q and r are somatimes called respectively a quotient and a remainder.

Remark 5.14. We do not require q and r to be unique. In fact, they
are not unique in general.

Examples.

(1) Z is a Euclidean domain with norm given by δ(n) = |n|.
(2) Any field is a Euclidean domain with norm given by δ(r) = 1

for all non-zero r.
(3) For any field K, the polynomial ring K[X] is a Euclidean

domain with norm δ(f) = deg(f), as we will see later.

Theorem 5.15. Every Euclidean domain is a PID.
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Proof. Let R be a Euclidean domain, I an ideal of R. If I = (0), then
I is principal. If I 6= 0, pick b ∈ I, b 6= 0 such that δ(b) ≤ δ(a) for
all a ∈ I − {0} (We can do this, because any set of elements of N has
a least element). We claim that (b) = I: if a ∈ I, then there exist q
and r such that a = qb + r, where either r = 0 or δ(r) < δ(b). But
a, b ∈ I, so −qb ∈ I and therefore r = a − qb ∈ I, since I is an ideal.
Since δ(r) < δ(b), we cannot have r 6= 0, since this would contradict
the choice of b. Hence we must have r = 0 and a = qb. Hence I ⊂ (b).
Conversely, since b ∈ I and I is an ideal (b) = bR ⊂ I. Hence we get
I = (b), so I is principal. �

This is proof is just a generalization of the argument we used earlier to
classify ideals of Z.

Theorem 5.16. Every PID is a UFD.

Proof. Step 1: We show that every non zero element which is not a
unit decomposes as a product of irreducible elements. We will do this
by assuming that this property does not hold and obtaining a contra-
diction. Let R′ be the set of non zero elements of R which are not
units, and cannot be factored as a product of irreducible elements. We
assume that R′ is not empty. Let F = {(a), a ∈ R′}. By assumption
this set is not empty. Consider a non empty chain of elements of F ,
that is a family of elements (ai)i≥0 ∈ F which is totally ordered for the
inclusion: (a1) ⊆ (a2) ⊆ · · · (ai) ⊆ · · · .
Consider I =

⋃

i≥1

(ai). This is an ideal since the ideals (ai) form of chain

(this would be not true otherwise!!!!). By assumption, I = (x) for some
x ∈ R. In particular x ∈ (aj) for some j and therefore (x) ⊂ (aj) ⊂
I = (x) and (x) = (aj). Assume now that there exists i > j for which
(aj)  (ai). Then we would have I = (x) = (aj) ( (ai) ⊂ I, so we
would get I ( I, which is a contradiction. Therefore, for all i > j, we
have (aj) = (ai), which means that the chain is finite.

So there exists a chain of elements of F , say (a1) ( (a2) ( · · · ( (an)
which cannot be extended. Otherwise, we could construct by induction
a chain of infinite length, which is a contradiction.

Since an ∈ R′, an is not a unit and is not irreducible. Therefore an = b.c
for some non-zero b, c ∈ R which are not units. Assume that (an) = (b).
Then an = u.b, u ∈ R∗, therefore b.c = b.u and then b.(c − u) = 0, so
c = u (R is an integral domain). Therefore c ∈ R∗, a contradiction.
We then have (an)  (b). In this case, b /∈ R′ (otherwise the chain
(a1) ( · · · ( (an) of elements of F can be extended into the chain
(a1) ( · · · ( (an) ( (b)). It means that b can be factored. A similar
reasoning shows that c can be factored as well, so is bc = an, which is
a contradiction.
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Step 2: Assume that p1 · · · pn = q1 · · · qm, where the pi’s and the qj’s
are irreducible elements. We can assume n ≥ m.

Consider the ideal (p1, qj). By assumption, (p1, qj) = (bj) for some
bj ∈ R. Therefore, p1 = bjcj for some cj ∈ R. Since p1 is irreducible,
we get bj ∈ R∗ or cj ∈ R∗.

Assume first that bj ∈ R∗ for all j. So (p1, qj) = R for all j. In
particular, we have 1 = ujp1 + vjqj for all j. Multiplying all these
relations, we get that 1 = up1 + vq1 · · · qm. So vq1 · · · qm = 1 in R/(p1).
In particular, q1 · · · qm 6= 0 in R/(p1). But this is a contradiction, since
q1 · · · qm = p1 · · · pn ∈ (p1).

Therefore, there exists some j for which bj /∈ R∗, and so cj ∈ R∗. In
this case (p1) = (bj) = (p1, qj), so qj ∈ (p1) and therefore qj = cp1.
Since p1 and qj are irreducible, c is a unit and p1 and qj are associate.
Now we simplify the relation by p1 and repeat the same process again
and again. We then show that p1, · · · , pm are associate with some qj’s.
If n > m, we will end up with a relation of the form ”product of
irreducibles= unit”, which would imply that the remaining irreducible
elements are invertible, a contradiction. Therefore n = m and we are
done. �

One can be summarise things as follows: ED ⇒ PID ⇒ UFD.

Warning: One can prove that Z[−1+i
√

19
2

] is a PID but not an ED for
any norm map(difficult!!!). Moreover, we will see later that Z[X] is a
UFD; however this is not a PID:

Exercise: Prove by a way of contradiction that (2, X) is not a principal
ideal of Z[X].

Given the name, it won’t be a surprise that a Euclidean domain turns
out to be a ring in which there is a version of Euclid’s algorithm.

Proposition 5.17. (Euclid’s algorithm). Let R be a Euclidean do-
main. There is an algorithm for finding a h.c.f. d of any two elements
a, b ∈ R, without factorizing a and b. Moreover, there are u, v ∈ R
such that d = au+ bv.

Proof. We can assume that a and b or both non zero, otherwise d is
easily computed. The algorithm is then as follows:

Suppose that δ(a) ≥ δ(b). Set r−1 = a, r0 = b.

Whenever it is possible (that is whenever the new remainder is 6= 0),
we proceed to the following divisions:

r−1 = q0.r0 + r1, q0 ∈ R, δ(r1) < δ(r0)
r0 = q1.r1 + r2, q1 ∈ R, δ(r2) < δ(r1)
...
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ri−1 = qi.ri + ri+1, qi ∈ R, δ(ri+1) < δ(ri)
...
rn−2 = qn−1.rn−1 + rn, qn ∈ R, δ(rn) < δ(rn−1)
rn−1 = qn.rn + 0 (that is rn+1 = 0).

Here n is the least integer such that rn 6= 0 but rn+1 = 0.

This integer n necessarily exists, since δ(r0), δ(r1), δ(r2), . . . is a strictly
decreasing sequence of non-negative integers.

We claim that d = rn is a h.c.f. for a and b.

- We first prove that for all i ≥ −1, ri = a.ui + b.vi for some ui, vi ∈ R.

We proceed by induction. Our induction hypothesis (Hi) is the follow-
ing:

(Hi) ri−1 = a.ui−1 + b.vi−1 and ri = a.ui + b.vi

First, (H0) is true. Indeed, r−1 = a.1 + b.0 and r0 = a.0 + b.1.

Now assume that (Hi) is true for some i ≥ 0, and let us prove that
(Hi+1) is true.

We would like to prove

(Hi+1) ri = a.ui + b.vi and ri+1 = a.ui+1 + b.vi+1

Since we are assuming that (Hi) is true, we already know the first part.
Now we have ri−1 = qi.ri + ri+1, so ri+1 = ri−1 − qi.ri and therefore
ri+1 = a.ui−1 + b.vi−1) − qi.(a.ui + b.vi).

Thus ri+1 = a.ui+1 + b.vi+1, with ui+1 = ui−1 − qi.ui and vi+1 = vi−1 −
qi.vi.

- We now prove that rn divides a and b.

We proceed by induction. This time, our induction hypothesis will be

(Hi) rn|rn−i and rn|rn−i−1

First, (H0) is true. Indeed rn|rn and by definition of n, we have rn−1 =
qn.rn, so rn|rn−1 as well.

Now assume that (Hi) is true for some i ≥ 0, and let’s prove that
(Hi+1) is true.

We want to prove

(Hi+1) rn|rn−i−1 and rn|rn−i−2

The first part is known from (Hi). Now we have rn−i−2 = qn−i−1.rn−i−1+
rn−i.
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Since rn divides rn−i and rn−i−1 by induction hypothesis, then it divides
rn−i−2.

Therefore (Hi+1) is true.

It follows that in particular (Hn) is true, that is rn divides r−1 = a and
r0 = b.

- We are now ready to conclude. By the previous point, rn|a and rn|b.
Now if c|a and c|b, then from the equation rn = a.un + b.vn, we get
that c|rn.

Therefore, d = rn is a h.c.f. of a and b. Moreover d = u.a + v.b for
some u, v ∈ R (take u = un and v = vn). �

Manual disposition

There is a convenient way to perform the algorithm and compute d =
h.c.f(a, b) and some u, v ∈ R satisfying d = a.u.+ b.v at once.

From the proof, we define sequences (ri)i≥−1, (qi)i≥0, (ui)i≥−1, (vi)i≥−1

of elements of R as follows

r−1 = a, r0 = b, ri−1 = qi.ri + ri+1,

u−1 = 1, u0 = 0, ui = ui−1 − qi.ui,

v−1 = 0, v0 = 1, vi = vi−1 − qi.vi.

We then construct an array with 4 columns corresponding to the values
−qi, ri, ui, vi, and with rows indexed by integers i ≥ −1 starting like
this:

−qi ri ui vi

a 1 0
b 0 1

We will workout a concrete example to illustrate the procedure at the
same time: R = Z, a = 32, b = 7.

So we have

−qi ri ui vi

32 1 0
7 0 1

Notice that the value q−1 is not defined. The next step is to compute
q0. It can be not totally immediate, but it is easy for R = Z or K[X],
and there are some recipes for other rings that we will give later.

In our example, 32 = 4 × 7 + 4, so q0 = 4.

Hence the next step gives
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−qi ri ui vi

32 1 0
−4 7 0 1

Now to compute the values r1, u1, v1, we multiply all the elements of
the last line by the first one, and we add the corresponding elements
lying above them.

For example, the next value of ri is −4 × 7 + 32, the next value of ui

is −4 × 0 + 1, and the next value of vi is −4 × 1 + 0. So we get

−qi ri ui vi

32 1 0
−4 7 0 1

4 1 −4

Now we need to compute the values for the next line. For this we
consider, only the two last lines, and we compute the new quotient,
that is we divide the two last values of ri.

In this example, we have to divide 7 by 4. So 7 = 1 × 4 + 3, and the
new quotient is 1.

Then we get

−qi ri ui vi

32 1 0
−4 7 0 1
−1 4 1 −4

Now we repeat the previous procedure to compute the new values for
the next line. The new value for ri is −1 × 4 + 7, the new value for ui

is −1 × 1 + 0, and the new value for vi is −1 × (−4) + 1.

Hence we get

−qi ri ui vi

32 1 0
−4 7 0 1
−1 4 1 −4

3 −1 5

To find the new quotient, we have to divide 4 by 3: 4 = 1 × 3 + 1, so
the new quotient is 1.

Then we have
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−qi ri ui vi

32 1 0
−4 7 0 1
−1 4 1 −4
−1 3 −1 5

The new value for ri is −1×3+4, the new value for ui is −1×(−1)+1,
and the new value for vi is −1 × 5 + (−4).

Then we get

−qi ri ui vi

32 1 0
−4 7 0 1
−1 4 1 −4
−1 3 −1 5

1 2 −9

To find the new quotient, we need to divide 3 by 1. But 3 = 3× 1 + 0,
so the new remainder is 0 and we stop here.

Hence a h.c.f of 32 and 7 is 1 (the last ri) and we have u = 2 (the last
ui) and v = −9 (the last vi).

Let us check: 32 × 2 − 7 × (−9) = 64 − 63 = 1 !!!

Remark: The method works for any ED. The problem is to find a
way to compute the quotients, which can be tricky sometimes.

Let j be the complex number given by the following equivalent defini-
tions:

j = e2πi/3 =
−1 + i

√
3

2
.

Notice that j is a root of the polynomial X2 +X + 1.

We already know that Z[j] = {a+ bj, a, b ∈ Z}.

Proposition 5.18. 1) Let R = Z[i],Z[j] or Z[i
√

2]. Then R is an
Euclidean domain for the norm δ(z) = |z|2.
2) Let R = Z[

√
2]. Then R is an Euclidean domain for the norm

δ(a+ b
√

2) = |(a+ b
√

2)(a− b
√

2)| = |a2 − 2b2|.

Proof. I will do only the second case.

Notice first that δ can be defined for elements of Q[
√

2] (i.e. for a, b ∈
Q) in the same way, and that we have δ(z.z′) = δ(z).δ(z′) for all z, z′ ∈
Q[

√
2].
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Now consider x = a+ b
√

2, y = c+ d
√

2, with δ(y) ≤ δ(x). We have

x

y
=

(a+ b
√

2)(c− d
√

2)

c2 − 2d2
= u+ v

√
2, u, v ∈ Q .

Let m (resp. n) be the closest integer from u (resp. from v) (do you
see why such m,n always exist ? Such m,n are unique, except if u or v
equal 1/2. In this latter case, we have two choices). Set q = m+ n

√
2.

Now set r = x − qy. We have δ(r) = δ(y(x/y − q)) = δ(y)δ(x/y − q).
But δ(x/y − q) = δ((u−m) + (v − n)

√
2) = |(u−m)2 − 2(v − n)2|.

By definition of u, v, we have |u−m| ≤ 1/2, |v − n| ≤ 1/2. Therefore

|(u−m)2 − 2(v − n)2| ≤ |u−m|2 + 2.|v − n|2 ≤ 1/4 + 2 × 1/4 = 3/4.

Consequently δ(r) ≤ 3
4
δ(y) < δ(y).

�

Example. We can now illustrate the fact that a quotient and a
remainder are not necessarily determined. Let R = Z[

√
2] with the

norm defined above. Let a = 1 + 2
√

2, and b = 2. Let us divide a by
b. To find a quotient, we proceed as in the proof of the previous
proposition. We have

a

b
=

1 + 2
√

2

2
= 1 +

1

2
+
√

2.

We now have to choose integers m,n ∈ Z such that

|1
2
−m| ≤ 1

2
and |1 − n| ≤ 1

2
.

We do not have a choice for n: necessarily, n = 1. However, we could
take either m = 0 or m = 1.

If we choose m = 0, then we get q =
√

2, and then r = a− qb = 1.

If we choose m = 1, then we get q = 1 +
√

2, and then
r = a− qb = −1.

Notice that in both cases, we have δ(r) = 1 < δ(b) = 4. Hence we get
two possible results for the division of a by b:

1 + 2
√

2 =
√

2 · 2 + 1 or 1 + 2
√

2 = (1 +
√

2) · 2 − 1.

Remark 5.19. Since the following rings are Euclidean domains, it
follows that they are principal ideal domains too:

Z, K[X],Z[i],Z[
√

2],Z[i
√

2],Z[j].
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5.3. Applying Euclid’s algorithm in Z[
√
d], d = −1, 2,−2 and

Z[j]. Euclid’s algorithm can be applied directly to find the h.c.f. of
two elements of these rings.

We have to find a way to compute quotients. For Z and K[X], there
is no particular problem.

Here is some recipes for Z[i],Z[
√

2],Z[i
√

2] and Z[j]. The following
recipe could seem a bit strange and coming from nowhere, but in fact
it is not. Actually, in the proofs (that I didn’t explain for Z[i] and Z[j]),
of the fact that these rings are ED, the way to construct a quotient and
a remainder is exactly the following one:

Let a, b ∈ R = Z[i],Z[
√

2],Z[i
√

2] or Z[j].

Step 1: Write a
b

under the form x + iy, x + y
√

2, x + iy
√

2 or x + jy,
with x, y ∈ Q (it’s always possible).

Step 2: Set q = m+ in,m+n
√

2,m+ in
√

2 or m+ jn, with m,n ∈ Z,
where m,n satisfy |u−m| ≤ 1/2, |v − n| ≤ 1/2. Set r = z − q.b.

For example, let’s compute the highest common factor of 5 + j and 14
in Z[j].

Recall that j2 + j+1 = 0, j = j2 = −1− j and δ(a+ bj) = a2−ab+ b2.

We have easily δ(14) ≥ δ(5 + j).

So we set r−1 = 14, r0 = 5 + j.

14

5 + j
=

14.(5 + j)

21
=

2

3
(4 − j) =

8

3
− 2

3
j,

so u = 8
3
, v = −2

3
. Therefore m = 3, n = −1.

So we set q0 = 3 − j, and the remainder is

r1 = 14− (3− j).(5+ j) = 14− (15−2j− j2) = 14− (16− j) = −2+ j.

But now

5 + j

−2 + j
=

(5 + j).(−2 + j)

7
=

−10 − 5 − 5j − 2j + 1

7
=

−14 − 7j

7
= −2−j.

and so −2 + j divides exactly into 5 + j in the ring Z[j]. Hence the
next remainder is 0 and −2 + j is a h.c.f. for 5 + j and 14.

Another example: to find a h.c.f. for 3 + 4i and 5 in Z[i]:

3 + 4i

5
=

3

5
+

4

5
i,

so we have u = 3
5
, v = 4

5
, and we can take m = 1, n = 1. So q0 = 1 + i,

and the remainder is

r1 = (3 + 4i) − 5(1 + i) = −2 − i.
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Now we have

5

−2 − i
=

5(−2 + i)

(−2 − i)(−2 + i)
=

5(−2 + i)

5
= −2 + i,

so the new remainder is 0.

The last non-zero remainder was −2− i, so this is a h.c.f. of 3+4i and
5 in Z[i].

5.4. Some useful tricks. This section is purely informal, and will
give you some tricks that you can use in exercises about factorisation
in Z[

√
d] or Z[j].

Let R = Z[
√
d] = {a+ b

√
d, a, b,∈ Z} or Z[j] = {a+ bj, a, b,∈ Z}.

We have a standard norm on Z[
√
d], which is

δ(a+ b
√
d) = |(a+ b

√
d)(a− b

√
d)| = |a2 − d.b2| ∈ N.

In the case of the ring Z[j], we set δ(a+ bj) = |a+ bj|2 = a2 − ab+ b2.

For example, if we consider Z[i],Z[j] or Z[i
√

2], we get simply δ(z) =
|z|2. If Z[

√
2], we recover the δ we define in the last section.

We can now use δ to solve several questions.

Trick 1: To find units of R = Z[
√
d] or Z[j]:

For z ∈ R, if z ∈ R∗, then δ(z) = 1.

Indeed, assume zz′ = 1 in R. Then δ(z.z′) = δ(z).δ(z′) = δ(1) = 1.
Since δ(z), δ(z′) ∈ N, the only possibility is δ(z) = 1.

You will have to do this in each case, since this is just a trick,

and not a general theorem that you may use.

The next step is to solve the equation δ(z) = 1 for z ∈ R, and then to
check that all the solutions you obtain are effectively units (by finding
the inverse).

In fact, one can show that if δ(z) = 1, then z is a unit...but you are not
supposed to know that, so you will have to prove this in each particular
case (which is done by the last step).

Example: Let R = Z[i
√

6]. We want to compute R∗. We have
δ(a+ bi

√
6) = |a+ bi

√
6|2 = a2 + 6b2.

If z, z′ ∈ R, we have

δ(z.z′) = |z.z′|2 = (|z|.|z′|)2 = |z|2.|z′|2 = δ(z).δ(z′).

Let z ∈ R∗, so z.z′ = 1 for some z′ ∈ R. Thus we have δ(z.z′) =
δ(z).δ(z′) = δ(1) = 1. Since δ(z), δ(z′) ∈ N, the only possibility is
δ(z) = 1.
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Write z = a+ ib
√

6. We then have a2 + 6b2 = 1. If b 6= 0, then |b| ≥ 1,
and we would get a2 + 6b2 ≥ 6b2 ≥ 6. So b = 0, which implies a2 = 1,
that is a = ±1. Thus z = ±1. Conversely, ±1 are units, so we get
R∗ = {±1}.
Exercise: Show that Z[i]∗ = {±1,±i},Z[i

√
2]∗ = {±1} and Z[j]∗ =

{±1,±j,±(1 + j)}.
Notice that they are infinitely many units in Z[

√
2]. Indeed, ±(1+

√
2)n

is a unit for all n ≥ 0.

Trick 2: To prove that some element is irreducible.

Suppose that you want to prove that z ∈ R is irreducible. First you
have to check that it is not a unit. Normally, you should have been
asked to determine all the units, so you should have proved z ∈ R∗ ⇐⇒
δ(z) = 1.

Now if z = z1.z2, then δ(z) = δ(z1).δ(z2), so δ(z1) divides δ(z) in N.

Therefore, to prove that we can proceed as follows:

- Find the list of ALL positive divisors m of δ(z).

- For all m 6= 1, δ(z), solve the equation δ(z1) = m and check that no
solution z1 ∈ R of this equation actually divides z.

- Then the only possibilities are δ(z1) = 1 or δ(z1) = m, which means
δ(z1) = 1 or δ(z2) = 1. By the previous trick, if means that z1 ∈ R∗ or
z2 ∈ R∗, so z is irreducible.

This is exactly the method we used to prove that 2 was irreducible in
Z[i

√
6].

Notice that if δ(z) is a prime number, then z is irreducible (do you see
why?).

Be careful, it could happen though that δ(z) is not prime, although z
is irreducible in Z[i], e.g., 3 is irreducible in Z[i], but δ(3) = 9. Also
i
√

6 is irreducible in Z[i
√

6] but δ(z) = 6.

Example: Let R = Z[i
√

6], and let’s prove that i
√

6 is irreducible.
This is not a unit, since it is different from ±1 (recall that R∗ = {±1}
in this particular case).

Remember that we proved that δ(z) = 1 ⇒ z = ±1.

Assume that i
√

6 = z1.z2 for some z1, z2 ∈ R. We have δ(i
√

6) = 6 =
δ(z1).δ(z2) in N.

Since δ(z1), δ(z2) ∈ N, it implies that δ(z1) divides 6, so δ(z1) = 1, 2, 3
or 6.

Assume that δ(z1) = 2, and write z1 = a + bi
√

6. We then have
a2 + 6b2 = 2.
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If b 6= 0, then |b| ≥ 1, and we would get a2 + 6b2 ≥ 6b2 ≥ 6. So b = 0,
which implies a2 = 2, which not possible since 3 is not a square in Z.

Assume now that δ(z1) = 3, and write z1 = a + bi
√

6. We then have
a2 + 6b2 = 3.

Write z = a+ ib
√

6. We then have a2 + 6b2 = 3. If b 6= 0, then |b| ≥ 1,
and we would get a2 + 6b2 ≥ 6b2 ≥ 6. So b = 0, which implies a2 = 3,
which not possible since 2 is not a square in Z either.

If δ(z1) = 1, we have z1 = ±1, so z1 is a unit.

If δ(z1) = 6, we have δ(z2) = 1, so z2 = ±1, and z1 is a unit.

Hence we proved that if i
√

6 = z1.z2, then z1 or z2 is a unit, so i
√

6 is
irreducible.

Trick 3: To factor elements.

If z = a1.a2 · · · ar, where the ai’s are irreducible elements, then δ(z) =
δ(a1).δ(a2) · · · δ(ar), so δ(ai) divides δ(z) in N.

Notice that δ(ai) 6= 1 since ai is not a unit.

Therefore, to factor z, we can proceed as follows:

Step 1: Find the set S of ALL positive divisors m of δ(z),m 6= 1, δ(z).

Step 2: Pick m ∈ S.

Step 3: Solve the equation δ(u) = m for u ∈ R.

If there is no solution, remove m form the set S and go to Step 2.

If there are some solutions, check if some of them divides z in R. If
not, remove m from S and go to Step 2.

If some u ∈ R, δ(u) = m divides z in R, then divide by u, replace z
by the quotient. If this new value of z is a unit, then goto Step 4.
Otherwise proceed to Step 1 with this new value of z.

Step 4: Once you have a decomposition z = u1 · · ·ur, repeat process for
each ui, to get a new decomposition of z. If in this new decomposition
each factor is irreducible then stop. Otherwise, repeat the process with
each new factor until this is the case.

Example: Let R = Z[i] and let z = 22+19i. Then δ(z) = 222 +192 =
845 = 5 × 132. Thus if z has any irreducible factors, they must have
norms 5, 13, 65 or 169.

Let’s solve δ(u) = 5, u = a+ bi ∈ Z[i]. We have a2 + b2 = 5. If |b| ≥ 3,
then b2 ≥ 9 and so a2 + b2 ≥ 9 as well.

So |b| ≤ 2, and therefore b = 0,±1,±2.

If b = 0, we get a2 = 5, which is not possible since a ∈ Z.

If b = ±1 , we get a2 = 4, that is a = ±2.
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if b = ±2, we get a2 = 1, that is a = ±1.

Therefore u = 2 + i, 2 − i,−1 + 2i,−1 − 2i.

Let’s figure out if 2 + i divides 22 + 19i in Z[i]. We have

22 + 19i

2 + i
=

(22 + 19i)(2 − i)

5
=

63 + 16i

5
,

which is not an element of Z[i], so 2 + i does not divide 22 + 19i.

Let’s figure out if 2 − i divides 22 + 19i in Z[i]. We have

22 + 19i

2 − i
=

(22 + 19i)(2 + i)

5
= 5 + 12i,

which is an element of Z[i], so 2 + i does divide 22 + 19i and 22 + 9i =
(2 − i)(5 + 12i).

Now δ(5 + 12i) = 25 + 144 = 169 = 132, so the possible irreducible
divisors of 5 + 12i have norm 13.

Let’s solve δ(u) = 13, u = a + bi ∈ Z[i]. We have a2 + b2 = 13. If
|b| ≥ 4, then b2 ≥ 16 and so a2 + b2 ≥ 16 as well.

So |b| ≤ 3, and therefore b = 0,±1,±2,±3.

If b = 0, we get a2 = 3, which is not possible since a ∈ Z.

If b = ±1 , we get a2 = 12, which is not possible since 12 = 22.3 is not
a square.

If b = ±2, we get a2 = 9, that is a = ±3.

If b = ±3, we get a2 = 4, that is a = ±2.

Therefore u = 2+3i, 2−3i,−2+3i,−2,−3i, 3+2i, 3−2i,−3+2i,−3−2i.

One can check that
5 + 12i

3 + 2i
= 3 + 2i, so 5 + 12i = (3 + 2i)2.

We then get z = (2 − i)(3 + 2i)2.

Now since the norm of 2 − i is 5, which is a prime number, then 2 − i
cannot be factored further. Since the norm of 3 + 2i is 13, which is a
prime number, then 3 + 2i cannot be factored further.

So a decomposition of z into products of irreducible elements is given
by z = (2 − i)(3 + 2i)2.

Remark: You really have to proceed to Step 4 ! Imagine that you
started by investigating the equation δ(u) = 65, and that you figured
out that u = 8 + i has norm 65 and divides 22 + 19i, so 22 + 19i =
(3 + 2i)(8 + i).

The process stops with the new quotient 3 + 2i, because 3 + 2i cannot
be factored, but the decomposition z = (3 + 2i)(8 + i) you obtained
is NOT a decomposition into product of irreducible elements, since
8 + i = (2 − i)(3 + 2i) can be decomposed further.
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You can avoid this situation by starting to deal with the elements m
of S which are powers of a prime number.

Remark: If Z[
√
d] happens to be an ED, it is often Euclidean for its

standard norm. If it happens to be the case, the arguments used to
prove it are those used to prove that Z[

√
2] is an ED.

However, this is not always the case, since we saw that Z[i
√

6] is NOT
a UFD, and therefore not an ED for any norm δ.
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6. Polynomial Rings

In all this chapter, R will denote a commutative ring.

6.1. Basic results. We recall the definition of the degree of a polyno-
mial given in the first chapter.

Definition. Let P ∈ R[X], P 6= 0. Since P 6= 0, we can write P =
anX

n + an−1X
n−1 + · · · + a1X + a0, with ai ∈ R, an 6= 0. The integer

n ≥ 0 is called the degree of P , and is denoted by deg(P ).

The coefficient an is called the leading coefficient of P .

We continue with a very important proposition, which generalizes the
long division for polynomials that you use to know.

Theorem 6.1 (Generalized long division for polynomials). Let R be an
integral domain. Let P1, P2 ∈ R[X], P1 6= 0, P2 6= 0, deg(P1) ≥ deg(P2)
and assume that the leading term of P2 is a unit of R. Then there exists
two polynomials Q,S ∈ R[X], with S = 0 or deg(S) < deg(P2) such
that P1 = Q.P2 + S. Moreover, Q and S are unique.

Proof. We prove the existence of Q and S by induction on deg(P1).
More precisely, let (Hn) be the following property:

(Hn) : For all P1, P2 ∈ R[X] non zero polynomials satisfying deg(P2) ≤
deg(P1) ≤ n, and such that the leading term of P2 is a unit, there
exist Q,S ∈ R[X], such that S = 0 or deg(S) < deg(P2) such that
P1 = P2Q+ S.

If deg(P1) = 0, then deg(P2) = 0. Therefore it means that P1 = a, P2 =
b, a, b ∈ R, b ∈ R∗. We can set Q = b−1a and S = 0 in this case. Thus
(H0) is true.

Now assume that (Hn) is true for some n ≥ 0, and let’s prove that
(Hn+1) is true. If deg(P1) ≤ n, then Q and S exist because (Hn) is
true, so we can assume without loss of generality that deg(P1) = n+1.

Write P1 = an+1X
n=1 + · · · + a1X + a0, P2 = bmX

m + · · · + b1X + b0.
Notice that by assumption we have n+ 1 ≥ m.

Set Q1 = b−1
m amX

n+1−m and S1 := P1 − b−1
m amX

n+1−mP2. Notice that
b−1
m makes sense in R, because bm ∈ R∗. Since P1, P2 ∈ R[X], we also

have Q1, S1 ∈ R[X]. Now by construction, the coefficient of Xn+1 in
S1 is 0, so deg(S1) ≤ n.

If S1 = 0 or deg(S1) < deg(P2), then we are done since we can
write P1 = b−1

m amX
n+1−mP2 + S1, so we can set S = S1 and Q =

b−1
m amX

n+1−m.
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Now assume that deg(S1) ≥ deg(P2). Since deg(P2) ≤ deg(S1) ≤ n, we
can apply (Hn), so there exist Q2, S2 ∈ R[X] such that S1 = P2Q2+S2,
such that S2 = 0 or deg(S2) < deg(P2).

Hence we have P1 = (b−1
m amX

n+1−m + Q2)P2 + S2, and S2 = 0 or
deg(S2) < deg(P2). Now set Q = b−1

m amX
n+1−m +Q2 and S = S2.

Therefore, (Hn+1) is true, and this concludes by induction. We now
prove uniqueness of Q and S.

Assume that P1 = Q1P2 + S1 = Q2P2 + S2, with Qi, Si ∈ R[X] and
Si = 0 or deg(Si) < deg(P2). Then we get P2(Q1 −Q2) = S2 − S1.

If S2 − S1 6= 0, then it implies that Q1 − Q2 6= 0 either, hence we get
deg(P2(Q1 − Q2)) = deg(P2) + deg(Q1 − Q2) ≥ deg(P2) (the equality
comes from the fact that R is an integral domain).

However, it is easy to see that deg(S2 − S1) < deg(P2), so we get a
contradiction. Hence S1 = S2, so P2(Q1 − Q2) = 0. Since R is an
integral domain, so is R[X], and since P2 6= 0, we get Q1 = Q2. �

In practice, the best way to find Q and S is to proceed exactly as in
the case of polynomials with coefficients in a field.

WARNING: This is not true for general polynomials of R[X]. For
example, X, 2X ∈ Z[X], but the quotient of X by 2X in 1

2
, which is

not an element of Z[X].

Corollary 6.2. If K is a field, then K[X] is an Euclidean domain.

Proof. Take δ to be the degree of a non-zero polynomial in K[X]. Since
K is a field, any non-zero element is a unit, so we can proceed to long
division of arbitrary non-zero polynomials by the previous result. �

Definition. Let R be a commutative ring, and let P (X) ∈ R[X]. We
say that α ∈ R is a root of P if P (α) = 0.

Proposition 6.3 (Remainder theorem). Let R be an integral domain,
and let P ∈ R[X]. Then α ∈ R is a root of P if and only if (X − α)
divides P .

Proof. By the generalized long division algorithm, P (X) = (X−α)P1+
P2, where either P2 = 0 or P2 has degree zero (in which case P2 is a
non-zero constant). So we can write P2 = r, for some r ∈ R. Then
P (α) = r, so P (α) = 0 if and only if r = P2 = 0. �

Proposition 6.4. Let R be an integral domain, and P ∈ R[X] be a
polynomial of degree n ≥ 0, P 6= 0. Then P has at most n roots in R.

Proof. We proceed by induction. If n = 0, then P is a nonzero constant
polynomial, hence P has no roots. Now assume that we proved the
result for all polynomials of degree n ≥ 0, and let P be a polynomial
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of degree n+ 1. If P has no roots then we are done. Otherwise, there
exists α ∈ R which is a root of P . But then P (X) = (X −α)Q, by the
previous result, for some Q ∈ R[X]. Notice that, since R is an integral
doamin, we have

deg(P ) = deg(X − α) + deg(Q),

that is deg(Q) = n.

Now if β ∈ R is any root of P , 0 = P (β) = (β−α)Q(β), so either β = α
or β is a root of Q, since R is an integral domain. By induction, Q has
at most n roots, so P has at most n+ 1 roots and we are done. �

When we study fields, the irreducibility of polynomials will be impor-
tant, so we need first to determine the units of R[X].

Recall a result we proved earlier:

Lemma 6.5. Let R be an integral domain. Then R[X]∗ = R∗.

Remark 6.6. If K is a field, then the notion of irreducibility in K[X]
coincides with the usual one.

Indeed, let P ∈ K[X] be an irreducible element of K[X] (in the general
sense). Then P is irreducible ⇐⇒ P 6= 0, P /∈ K[X]∗ and P =
P1P2 ∈ K[X] ⇒ P1 ∈ K[X]∗ or P2 ∈ K[X]∗. But here K[X]∗ = K∗ =
K − {0}, and in particular P 6= 0 and P /∈ K[X]∗ is equivalent to say
that deg(P ) ≥ 1, so we recover the usual definition of an irreducible
polynomial, that is deg(P ) ≥ 1 and P can be written as a product of
two non constant polynomials.

Example. If K is a field, then any polynomial of degree 1 is
irreducible. Indeed, let P ∈ K[X], deg(P ) = 1. Assume that
P = P1P2. Then deg(P ) = 1 = deg(P1) + deg(P2), so necessarily
deg(P1) = 0 or deg(P2) = 0, which means that P1 or P2 is a non zero
constant polynomial, that is a unit of K[X].

The following theorem solves the question of which polynomials are
irreducible over C:

Theorem 6.7 (Fundamental theorem of algebra). Any non-constant
polynomial in C[X] has a root in C.

We shall not prove this, although there is a proof in Allenby, section
4.8. One reason why we won’t prove this is that despite of its title, it
isn’t a completely algebraic result. The proof given in Allenby uses no
analytic facts except that a polynomial of odd degree in R[X] has a
root in R.

A field K such that every polynomial over K[X] has a root in K, or
equivalently, has all its roots in K, is called algebraically closed. Thus
this theorem says that C is algebraically closed.
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Proposition 6.8. The only irreducible polynomials in C[X] are poly-
nomials of degree one, i.e., up to multiplication by a unit they are
polynomials of the form X − α.

Proof. Any polynomial in C[X] of degree greater than one is not irre-
ducible. Also any polynomial of degree zero is a unit. �

Proposition 6.9. The only irreducible polynomials in R[X] are poly-
nomials of degree one, and polynomials aX2 + bX + c of degree two
such that 4ac > b2.

Proof. View P (X) ∈ R[X] as an element ofC[X]. Then P = λ
∏n

i=1(X−
αi). Since the coefficients of P are real, P (αi) = P (αi) = 0, so the non-
real roots occur in conjugate pairs. Now if α is not real, (X−α)(X−α)
is a quadratic polynomial with no real roots, so is as described above
(with a = 1). Such a quadratic is irreducible in R[X] because factors
would have degree one, so would lead to roots. �

The problem of determining irreducibility in Q[X] is harder.

6.2. Factorisation in R[X]. We have shown that K[X] is a unique
factorization domain for any field K. We’ll look at the same problem
for R an integral domain with field of fractions F = KR. Clearly,
if R is not a UFD, then R[X] cannot be, because even the degree
zero polynomials won’t factor uniquely. This turns out to be the only
restriction however.

In this section, R is a UFD and F denotes its field of fractions. Recall
now that in a UFD, prime and irreducible elements coincide, so we will
talk about prime elements of R and decomposition into prime factors.

Definition. A polynomial f ∈ R[X] is said to be primitive if a h.c.f.
of all the coefficients is a unit of R.

Examples.

- If f ∈ R[X] is a monic polynomial, then f is primitive.

- If f ∈ R[X] is primitive and c ∈ R∗, then cf is primitive.

We start with a little lemma:

Lemma 6.10. Let f ∈ F [X], f 6= 0. Then there exists c ∈ F − {0}
and f1 ∈ R[X] primitive such that f = c.f1 Moreover, c and f1 are
unique up to multiplication by a unit of R.

Proof. Let b ∈ R be a common denominator for all the coefficients of
f . Then f2 = b.f ∈ R[X]. Now let d be a h.c.f. of the coefficients of
f2. We then have f2 = d.f1, where f1 satisfies the required conditions,
and f = (b.d).f1.



60 RINGS AND FIELDS

To prove the second part, assume that f = c.f1 = c′.f ′
1, where f1, f

′
1

satisfy the two conditions. Write c = a
b
, c′ = a′

b′
, so we have ab′f1 =

a′bf ′
1. Set u = ab′, u′ = ba′, so uf1 = u′f ′

1. If u and u′ are units,
then c

c′
= u

u′
is a unit, and we are done. So assume that u is not a

unit for example. Let π be a prime element dividing u. Write f ′
1 =

∑

αiX
i, αi ∈ R. By assumption on f ′

1, π does not divide some αi. But
we have π|u, so it divides all the coefficients of uf1 = u′f ′

1. In particular
π|u′αi, so π|u′ since π 6 |αi and π is prime. Since this is true for all the
prime elements dividing u, we get u|u′. But now u′ is therefore not a
unit, and we can do the same reasoning to prove that u′|u; therefore
u and u′ are associate and thus differ by a unit in R (since R is an
integrla domain), so the same is true for c and c′. �

Lemma 6.11. If f ∈ R[X], then c is a h.c.f. of the coefficients of f .
In particular c ∈ R.

Proof. Let c′ be a h.c.f. of the coefficients of f . Then f = c′.g, where
g ∈ R[X] is primitive. Now we also have f = c.f1. By the uniqueness
part of Lemma 6.10, c and c′ differ by a unit of R. In particular, c is
also a h.c.f. of the coefficients of f . �

Lemma 6.12 (Gauss Lemma). Let f, g ∈ R[X]. If f and g are prim-
itive, then fg is primitive.

Proof. We have to prove that a given prime element π does not divide
all the coefficients of fg. Consider R := R/(π). Since π is a prime
element, (π) is a prime ideal and thus R is an integral domain. Now
by assumption f and g are non zero polynomials of R[X] (otherwise
π would divide all the coefficients of f and g, and f and g would not
be primitive). Therefore fg = fg 6= 0, so π does not divide all the
coefficients of fg. �

Lemma 6.13. Let f, g ∈ R[X] and h ∈ F [X] such that f = g.h., g, h,∈
F [X]. If f and g are primitive, then h is a primitive polynomial of
R[X].

Proof. Write h = ch1, where c ∈ F ∗ and h1 ∈ R[X] is primitive, so we
have f = cgh1. By Gauss Lemma, gh1 is primitive. By the uniqueness
part of Lemma 6.10, it implies that c ∈ R∗ (since f is primitive). Hence
h = ch1 is a polynomial of R[X] and is primitive as well. �

Before continuing, let’s give an example which point out some diffi-
culties concerning the relation between irreducibility in R[X] and irre-
ducibility in F [X].

First of all, let’s recall that, if R is an integral domain, then R[X]∗ =
R∗.
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Now consider P (X) = 2X − 2 ∈ Z[X] for example. This polynomial is
irreducible in Q[X], since it has degree 1. However, it is not irreducible
in Z[X] !!! Indeed, P (X) = 2.(X − 1). But Z[X]∗ = Z∗ = {±1}, so 2
and X − 1 are not units, and therefore P is not irreducible.

More generally, if P ∈ R[X] is not primitive, then P is not irreducible in
R[X], although it could be irreducible in F [X]. Indeed, by assumption
every coefficient of P are divisible by a same irreducible element π, and
therefore we obtain a non-trivial decomposition P = π.Q,Q ∈ R[X].

The next result says that is essentially the only nasty thing which could
happen:

Theorem 6.14 (Gauss theorem). Let R be a UFD with field of frac-
tions F . Then R[X] is a UFD. Its irreducible elements are described
as follows:

1) The prime elements of R

2) The primitive polynomials of R[X] of degree ≥ 1 which are irre-
ducible in F [X].

Proof. We first describe the irreducible elements of R[X]. Let f ∈
R[X].

Assume deg(f) = 0, then f = a ∈ R. Notice that if f = g.h ∈ R[X],
then deg(g) = deg(h) = 0, so g, h ∈ R. It is therefore immediate that
f is irreducible in R[X] if and only if it is irreducible in R.

Now assume that deg(f) ≥ 1. If f is not irreducible, then let π ∈ R be a
prime element dividing all the coefficients of f . Then f = π.g for some
g ∈ R[X] of degree ≥ 1. Since π and g are not units of R[X] (recall
that we have R[X]∗ = R∗, we obtain a non trivial decomposition of f
and thus f is not irreducible. Hence if f is irreducible, it is necessarily
primitive.

Now assume that f is primitive. We now show that f is irreducible in
R[X] if and only if it is irreducible in F [X], which will conclude the
proof of the second part of the theorem.

Assume first that f is irreducible in R[X], and assume that f is not
irreducible in F [X], that is f = g.h, g, h ∈ F [X], deg(g) ≥ 1, deg(h) ≥
1. Write g = cg1, where c ∈ F ∗ and g1 ∈ R[X] is primitive. We then
have f = g1.(c.h). By Lemma 6.13 h′ := c.h ∈ R[X] (and is even
primitive), so we obtain a non trivial decomposition in R[X], which is
a contradiction. Hence f is also irreducible in F [X].

Finally, assume that f is not irreducible in R[X], so f = g.h for g, h ∈
R[X], g, h /∈ R[X] = R∗. Assume first that deg(g) = 0, so g ∈ R. Since
g /∈ R∗, then it is divisible by a prime element of R, and therefore
f = g.h is not primitive, which is a contradiction, so deg(g) ≥ 1.
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Similarly, deg(h) ≥ 1. Hence the decomposition f = g.h is also non-
trivial in F [X], so f is not irreducible in F [X].

This concludes the proof of the second part of the theorem.

Now let’s prove the existence of the decomposition.

Let f ∈ R[X], f 6= 0. Write f = P1 · · ·Pr,where the Pi’s are irreducible
in K[X]. Write Pi = cifi, where fi ∈ R[X] is primitive and ci ∈ F ∗.
Then f = c′f1 · · · fr, where c′ = c1 · · · cr ∈ F ∗. Since all the fi’s are
primitive, then f1 · · · fr is primitive as well by Gauss Lemma (applied
several times). Write f = cf1, where c ∈ R is a h.c.f of the coefficients
of f and f1 is primitive. By the uniqueness part of Lemma 6.10, c and
c′ differs by a unit of R, and in particular c′ ∈ R. Since we know that
each fi is an irreducible element of R[X], and that irreducible elements
of R are also irreducible in R[X], it suffices to decompose c′ in R to
obtain a suitable decomposition in R[X].

Now assume that f = π1 · · · πmf1 · · · fr = π′
1 · · · π′

ng1 · · · gs, where fi, gj

are primitive and πi, π
′
j are prime elements in R. By uniqueness of the

decomposition in F [X], we get that r = s and that each fi is associate
to some gj. After renumbering, one can assume that gi = λifi, λi ∈ F ∗.
Since gi, fi ∈ R[X] are primitive, we have λ ∈ R∗, so fi and gi are
associate in R[X]. Therefore, since R is an integral domain, we can
simplify by each fi on both sides, and we get that π1 · · · πm = u.π′

1 · · · π′
n

for some u ∈ R∗. We conclude using the uniqueness of a decomposition
in R. �

Important remark: Gauss Theorem has an important consequence:
if P ∈ R[X] is a primitive polynomial, then P is irreducible in R[X]
if and only if it is irreducible in F [X].

Corollary 6.15. The ring K[X1, . . . , Xn] is a UFD for any field K
and n, and Z[X1, . . . , Xn] is a UFD.

We would like to continue now by giving some irreducibility criterions.
Let’s start with some criterion which works on any field.

Proposition 6.16. Let K be any field, and let P ∈ K[X], deg(P ) = 2
or 3. Then P is irreducible in K[X] if and only if P has no roots in
K.

Proof. If P has a root α ∈ K, then P (X) = (X −α).Q(X), Q ∈ K[X].
Since we have deg(Q) = deg(P ) − 1 ≥ 1, we obtain a non-trivial
decomposition and P is therefore not irreducible. Now assume that P
is not irreducible, so P = P1.P2, Pi ∈ K[X], deg(Pi) ≥ 1.

Since deg(P ) = 2 or 3, it is easy to see that necessarily one of the
polynomials Pi has degree 1, say P1. Then P1(X) = aX+ b, a 6= 0, and
α := −b.a−1 ∈ K is a root of P1, hence a root of P . �
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Warning: This is not true for polynomials of degree ≥ 4 or polynomi-
als with coefficients in an arbitrary ring R. Indeed, 2X2+2 = 2.(X2+1)
is not irreducible in Z[X] (it is not primitive) but has no root in Z.
Moreover X4 +2X2 +1 ∈ R[X] has no root in R, but is not irreducible,
since X4 + 2X2 + 1 = (X2 + 1)2 = (X2 + 1)(X2 + 1).

Now let’s give a trick to decide whether or not a given polynomial
P ∈ Q[X] has a root in Q.

We can always write P = r.Q, where r ∈ Q and Q ∈ Z[X], and P has
a root if and only if Q as a root. So we can assume without loss of
generality that P ∈ Z[X]

Write P = anX
n+· · ·+a1X+a0, ai ∈ Z. Assume that r =

p

q
, h.c.f(p, q) =

1 is a root of P .

Then we have

an
pn

qn
+ · · · + a1

p

q
+ a0 = 0,

so

anp
n + an−1p

n−1q + · · · + a1pq
n−1 + a0q

n = 0.

Therefore,

anp
n = −(an−1p

n−1q + · · · + a1pq
n−1 + a0q

n).

Since the right -hand side is divisible by q is Z, so is anp
n. But

h.c.f(p, q) = 1, so q|an.

A similar proof shows that p|a0.

Hence, if
p

q
, h.c.f.(p, q) = 1 is a root of P = anX

n + · · ·+a1X+a0, ai ∈
Z, then q|an and p|a0.

Therefore, we only have finitely many possibilities to try.

We now come to two powerful irreducibility criterions:

Theorem 6.17 (Eisenstein’s irreducibility criterion). Let R be a UFD
with quotient field F , and let f ∈ R[X] be a primitive polynomial,
f = anX

n + an−1X
n−1 + · · · + a1x+ a0. Assume that there is a prime

element π ∈ R such that

1) π 6 |an

2) π|ai for all i = 0, · · · , n− 1

3) π2 6 |a0.

Then f is irreducible in R[X] and F [X].

Proof. Since f is primitive, f is irreducible in F [X] if and only if f is
irreducible in R[X]. Clearly f is not zero nor a unit. Suppose that
f = gh in R[X], with g, h /∈ R[X]∗ = R∗.
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We have f = gh in R[X], where

g(X) = bmX
m + bm−1X

m−1 + · · · + b1x+ b0,

h(X) = cn−mX
n−m + · · · + c1x+ c0.

Let R = R/(π).

We have f = gh in R[X]. Since f = anX
n, with an 6= 0, we have

an = bmcn−m 6= 0.

Therefore deg(g) = m, deg(h) = n−m.

Moreover m 6= 0 and n 6= m. Indeed, if m = 0 for example, then
g = b0 ∈ R − 0. But since f = g.h and f is primitive, it would imply
that g = b0 ∈ R∗, which is a contradiction. Similarly m 6= n.

Therefore Xn = g.h, with 1 ≤ deg(g), deg(h) ≤ n − 1 in R[X]. Com-
paring the constant terms, we get b0c0 = 0, so b0 = 0 for example since
R is an integral domain, that is X|g in R[X]. Hence we can write
g = Xkg′ for some 1 ≤ k ≤ m ≤ n− 1 and g′ with a non zero constant
coefficient d0 ∈ R. So we get Xn = Xkg′h. Comparing the coefficient
of Xk, we get d0c0 = 0, so c0 = 0, and π|c0. Therefore π2 divides
b0.c0 = a0, a contradiction. �

This criterion is really useful when R = Z, and π = p is a prime
number. For example, it follows immediately that Xn − 2 ∈ Z[X] is
irreducible in Z[X] and Q[X] for all n ≥ 1. In particular, there exist
irreducible polynomials of Q[X] of arbitrary large degree.

We end this section by another irreducibility criterion.

Theorem 6.18 (Reduction irreducibility criterion). Let R be a UFD
with quotient field F , and let f = anX

n + · · · + a1X + a0 ∈ R[X] be a
primitive polynomial.

Assume that there exists a prime element π ∈ R such that:

1) π 6 |an.

2) The reduction f of f modulo π is irreducible in R[X], where R =
R/(π).

Then f is irreducible in R[X] and F [X].

Proof. Since f is primitive, f is irreducible in F [X] if and only if f is
irreducible in R[X]. Let’s prove that f is irreducible in R[X]. Clearly
f is not zero nor a unit. Assume that f = g.h, g, h ∈ R[X]. We have
f = g.h. Since π 6 |an, we have deg(g) = deg(g) and deg(h) = deg(h),
as in the previous proof. Now f is irreducible, hence g or h is a unit of
R[X], that is an element of R

∗
, since R is an integral domain. Assume

for example that g ∈ R
∗
, so deg(g) = 0 = deg(g). Then g = a ∈ R.
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Since f = g.h and f is primitive, then necessarily g = a ∈ R∗. Hence
f is irreducible in R[X]. �

Once again, this is very useful in the case R = Z.

Example:

f = X3 − 2398563495689866X − 2876387683712763767468761 ∈ Q[X]

is irreducible.

We could of course try to see if such polynomial as a root. To do so,
we will have factor the last coefficient, list all the set of divisors, and
try all the possibilities. Without a computer or a calculator, it could
be quite long and painful.

Let’s try to apply the previous criterion. First of all, this polynomial
is primitive (it is monic !!!), so it is irreducible in Q[X] if and only if it
is irreducible in Z[X].

Now let’s reduce modulo 3. We have f = X3 − X − 1 ∈ F3[X]. One
easily check that this polynomial has no root in F3, and since it has
degree 3, it is sufficient to prove it is irreducible in F3[X]. Now apply
the previous criterion.

We finish with a criterion which may be useful sometimes, and which
works over any commutative ring R.

Proposition 6.19. Let R be a commutative ring and let P ∈ R[X].
For all a ∈ R, we have

P (X) is irreducible in R[X] ⇐⇒ P (X − a) is irreducible in R[X]

Proof. See exercise sheets. �

Example: let f = X4 + 4X3 + 6X2 + 4 − 1 ∈ Z[X]. We have

f(X − 1) = X4 − 2 ∈ Z[X],

which is irreducible in Z[X], by Einsenstein’s criterion, so f is irre-
ducible as well.
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7. Digression: Things you should know about vector

spaces

Let F be a field. A vector space over F is a set V which is an abelian
group with group composition written as +, identity element 0 and
inverse operation written as − (think of the group operation as addition
of vectors) and is also equipped with a function from F×V to V (think
of multiplication by scalars) such that for all λ, µ ∈ F and v,w ∈ V ,

λ(v + w) = λv + λw, (λ+ µ)v = λv + µv, λ(µv) = (λµ)v, 1v = v.

Recall that saying that V is an abelian group as above means that for
all u,v,w ∈ V :

0 + v = v,u+v = v + u,v + (−v) = 0,u+(v + w) = (u+v) + w.

A finite list v1, . . . ,vn of vectors is independent if for all λ1, . . . , λn ∈ F ,

n
∑

i=1

λivi = 0 implies that for all i, λi = 0.

Note that a list containing the zero vector can never be independent,
nor can a list containing the same vector twice. An infinite list of
vectors is independent if each finite sublist is independent. A set of
vectors spans V if every vector in V can be written as a finite sum
of scalar multiples of the vectors in the set. A basis for V is a set
of vectors that spans V and is independent. It may be shown (using
Zorn’s lemma) that any vector space has a basis, and that any two
bases for the same vector space contain the same number of elements.
The dimension of a vector space is the size of a basis for it. We denote
this by dimF V , or dimV if there is no ambiguity.

A subspace, W , of V is a subset such that for all λ ∈ F and v,w ∈W ,
we have λv ∈ W and v + w ∈ W . This is intrinsically a vector space,
and dimW ≤ dimV .

Examples: 1. The space F n of row vectors consisting of ordered n-
tuples (λ1, . . . , λn) is a vector space of dimension n. The unit vectors
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) form a basis.

In the first year, you have studied vector subspaces of the vector space
Rn, and proved that any vector subspace of Rn has a basis, and that
the numbers of elements in any two bases of the same subspace are
equal. So hopefully the step to abstract vector spaces (as opposed to
subspaces of F n) won’t be too daunting.

Indeed, if V has finite dimension, n, then V is is isomorphic as a vector
space to F n.

2. The polynomial ring F [X] is a vector space over F , with basis the
monomials 1, X,X2, X3, . . ..
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3. If K is a subfield of L, we may view L as a vector space over K.
For example, C is a 2-dimensional vector space over R, since 1, i form
a basis. As another example, Q[i] is a 2-dimensional vector space over
Q, again with basis 1, i.
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8. Field extensions

8.1. Basic definitions.

Definition. Let F be a field. If K ⊆ F is a subfield of F , we call F a
field extension of K, and we denote it by F/K. Then F can be viewed
as a vector space over K, and the degree of F over K is defined to be
the dimension of F as a K-vector space. Write [F : K] for the degree
of F over K. We say that F/K is finite if [F : K] is finite, and infinite
otherwise.

Examples.

- C /R is a finite field extension of degree 2.

- R /Q is an infinite field extension.

- C(X)/C is an infinite field extension.

Lemma 8.1 (Tower degree formula). Let L/F and F/K two field ex-
tensions (i.e. K ⊂ F ⊂ L). Then L/K is finite if and only if L/F and
F/K are finite, and in this case, we have:

[L : K] = [L : F ].[F : K].

Proof. Let (ei)i∈I be a F -basis of L and let (fj)j∈J be a K-basis of F .
We proceed to show that (ei.fj)(i,j)∈I×J is a K-basis of L, which will
show everything at once.

First we show that this family spans L as a K-vector space.

Let x ∈ L. Since (ei)i∈I is a F -basis of L, we have x =
∑

i

λiei for

some λi ∈ F . Now each λi may be expressed as λi =
∑

j µijfj for some
µij ∈ K, and so

x =
∑

i,j

µijeifj.

Now we have to show that for any finite subset S of I×J , the elements
(ei.fj)(i,j)∈S are linearly independent over K. Adding some elements if
necessary, one can always assume that S = I ′ × J ′, where I ′ ⊂ I and

J ′ ⊂ J are finite. Suppose that
∑

(i,j)∈I′×J ′

µijeifj = 0 for some µij ∈ K.

Letting λi ∈ F be defined by λi =
∑

j∈J ′

µijfj, we obtain 0 =
∑

i∈I′

λiei.

Now by linear independence of the ei, i ∈ I ′, we deduce that for each i,
λi = 0. Then by linear independence of the fj, j ∈ J ′, we deduce from

the equation 0 = λi =
∑

j∈J ′

µijfj that µij = 0 for all i and j. �
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Definition. Let F/K be a field extension, and let α1, · · · , αn ∈ F .
We denote by K(α1, · · · , αn) the smallest subfield of F containing
K and α1, · · · , αn, and call it the subextension of F/K generated by
α1, · · · , αn.

We say that F/K is a simple extension of K if there exists α ∈ K such
that F = K(α).

Lemma 8.2. Let F/K be a field extension, let n,m ≥ 0 be two non-
negative integers and let α1, · · · , αn, β1, · · · , βm ∈ F . Then we have

K(α1, · · · , αn, β1, · · · , βm) = K(α1, · · · , αn)(β1, · · · , βm)

Proof. By definition, K(α1, · · · , αn, β1, · · · , βm) is a subfield of F con-
taining K and the αi’s and βj’s . In particular, it contains K and the
αi’s. Since K(α1, · · · , αn) is the smallest subfield of F satisfying these
properties, we have

K(α1, · · · , αn) ⊆ K(α1, · · · , αn, β1, · · · , βm)

Since K(α1, · · · , αn, β1, · · · , βm) contains also the coordinates of the
points of A′, we get for the same kind of reason

K(α1, · · · , αn)(β1, · · · , βm) ⊆ K(α1, · · · , αn, β1, · · · , βm)

Moreover K(α1, · · · , αn)(β1, · · · , βm) is a subfield of F which contains
K(α1, · · · , αn) and the βj’s. Hence it contains K, the αi’s and the βj’s.
Since K(α1, · · · , αn, β1, · · · , βm) is the smallest subfield of F with these
properties, we get

K(α1, · · · , αn, β1, · · · , βm) ⊆ K(α1, · · · , αn)(β1, · · · , βm)

�

In fact, one can give a precise description of K(α1, · · · , αn):

Exercise: Show that K(α1, · · · , αn) is equal to

{P (α1, · · · , αn)

Q(α1, · · · , αn)
, P,Q ∈ K[X1, · · · , Xn], Q(α1, · · · , αn) 6= 0}

We end this section by studying field extensions of small degree. We
start with a simple remark.

Remark 8.3. Let F/K be a field extension and α ∈ F . Then we have

[K(α) : K] = 1 ⇐⇒ K(α) = K ⇐⇒ α ∈ K

Indeed, if [K(α) : K] = 1, then K(α) is a K-vector space of dimension
1 over K, so K(α) = K. Hence α ∈ K since K(α) contains α. Now if
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α ∈ K, then K is a subfield of F containing K and α, so K(α) ⊂ K.
Now by definition K ⊂ K(α) so we are done.

Notation: Let F/K be a field extension. If d ∈ K, we denote by
√
d

any element α ∈ F satisfying α2 = d. Notice that α is only determined
up to a sign.

Lemma 8.4. Let F/K be a field extension of K. If d ∈ K, then

K(
√
d) = {a+ b

√
d, a, b ∈ K}

Moreover, [K(
√
d) : K] = 1 if d is a square in K, and [K(

√
d) : K] = 2

otherwise.

Proof. If d is a square, this is obvious, since both sets are equal to K,
since

√
d ∈ K is this case. So we can assume that d is not a square in

K.

Since K(
√
d) contains K and

√
d and is closed under addition and

multiplication, we get K(
√
d) ⊃ {a + b

√
d, a, b ∈ K}. To prove the

reverse inclusion, we have to check that {a+b
√
d, a, b ∈ K} is a subfield

of F containing K and
√
d. The proof works exactly as for the case

K = Q (see solutions of exercise sheet 1 for a proof in this case), so we
are done.

From the previous point, 1 and
√
d spans K(

√
d) as a K-vector space,

so [K(
√
d) : K] ≤ 2. By a previous remark, [K(

√
d) : K] = 1 ⇐⇒√

d ∈ K, which means that d is a square in K. Hence, [K(
√
d) : K] ≥ 2

since d is not a square in K, so we are done. �

We are now ready to prove the structure theorem of field extensions of
degree 2.

Theorem 8.5. Let F/K be a field extension. Assume that char(K) 6=
2. Then [F : K] = 2 ⇐⇒ F = K(

√
d) for some d ∈ K, such that d is

not a square in K.

Proof. Let β ∈ F, β /∈ K (such a β exists since the assumption implies
that F 6= K). The two elements 1 and β are easily seen to be linearly
independent over K, since β /∈ K. Since F has dimension 2 over K,
we get that 1, β is a K-basis of F . Hence F = {x+ yβ, x, y ∈ K}.
Since K(β) contains K and β, and is closed under addition and multi-
plication, we get that F ⊆ K(β). Now by definition K(β) is a subfield
of F , so K(β) ⊆ F , hence F = K(β).

Since F has dimension 2 over K, the elements 1, β, β2 are necessarily
dependent. Hence there exists a, b, c ∈ K not all zero such that

aβ2 + bβ + c = 0
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We necessarily have a 6= 0, otherwise we would have β = −c
b

∈ K.

Hence β = −b±
√

d
2a

, where d = b2 − 4ac (here we use the fact that
char(K) 6= 2, since we divide by 2). Notice that d is not a square since
β /∈ K.

Since F = {x + yβ, x, y ∈ K}, easy computations show that F =

{u+ v
√
d, u, v ∈ K} = K(

√
d). �

Remark 8.6. If char(K) = 2, the result of 2) is not true anymore.

Side remark: Let F/K be a field extension, and let α, β ∈ F . It is
useful sometimes to be able to compare K(α) and K(β). In fact we
have

K(α) = K(β) ⇐⇒ α ∈ K(β) and β ∈ K(α)

If K(α) = K(β), then α ∈ K(β), since K(α) contains α. Similarly
β ∈ K(α). Conversely, assume that α ∈ K(β) and β ∈ K(α). In this
case, K(β) is a subfield of F containing K and α. Since K(α) is the
smallest subfield of F with these properties, we get K(α) ⊆ K(β). The
other inclusion is proved similarly using the fact thatβ ∈ K(α).

Example. We have

Q(
3 +

√
242

8
) = Q(

√
2)

Indeed
3 +

√
242

8
=

3 + 11
√

2

8
=

3

8
+

11

8

√
2. Since Q(

√
2) contains Q

and
√

2, and is closed under addition and multiplication, it follows

that3+
√

242
8

∈ Q(
√

2). Hence we get

Q(
3 +

√
242

8
) ⊆ Q(

√
2)

Now we have
√

2 = − 3

11
+

8

11
· 3 +

√
242

8
. Since Q(3+

√
242

8
) contains

Q and 3+
√

242
8

, the previous equality show that
√

2 ∈ Q(3+
√

242
8

), hence
we get

Q(
√

2) ⊆ Q(
3 +

√
242

8
)

8.2. Algebraic elements and minimal polynomial.

Definition. If F/K is a field extension and α ∈ F , we say that α is
algebraic over K if there is a non-zero polynomial f ∈ K[X] such that
f(α) = 0. We say that α is transcendental over K otherwise.
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Examples.

- Any α ∈ K is algebraic over K, since it is a root of f(X) = X − α.

- i ∈ C is algebraic over Q, since it is a root of X2 + 1 ∈ Q[X].

- Any α ∈ C is algebraic over R, as it is a root of
f(X) = (X − α)(X − ᾱ) = X2 − (α+ ᾱ)X + αᾱ ∈ R[X].

- The real numbers e and π are transcendental over Q (difficult!).

Proposition 8.7. Let F/K be a field extension, and let α ∈ F . The
set

Iα := {P ∈ K[X]|P (α) = 0}
is an ideal of K[X]. It is a non-zero ideal if and only if α is algebraic
over K. In this case, there exists a unique monic irreducible poly-
nomial µα,K such that

Iα = (µα)

Proof. The fact that Iα is an ideal comes from the fact that it is the
kernel of the ring homomorphism

hα : P ∈ K[X] 7→ P (α) ∈ F

or by a direct proof. Now by definition, Iα is not zero if and only if α
is algebraic. Since K[X] is a PID, then I = (P0) for some P0 ∈ K[X].
Assume that Iα 6= (0), so P0 6= 0. Notice also that P0 is not a constant
polynomial, since α is a root of P0. Since non-zero elements of K are
units, we have (P0) = (cP0) for all c ∈ K∗, so we can assume that P0

is monic after multiplying it by a suitable non-zero element of K.

Let us prove that P0 is irreducible. Since P0 6= 0 is not constant,
it is not a unit. Now assume that P0 = P1P2, Pi ∈ K[X]. Then
P0(α) = 0 = P1(α)P2(α). Hence P1(α) = 0 or P2(α) = 0. Assume
that P1(α) = 0 for example, the second case being similar. Then
P1 ∈ Iα = (P0), so P0|P1. Since P1|P0 as well, we get that P0 = cP1 for
some c ∈ K, c 6= 0. Hence we get that P2 = c, which is a unit.

Now if Iα = (P0) = (Q0) with Q0 ∈ K[X] monic, then P0|Q0 and
Q0|P0, so Q0 = cP0 for some c ∈ K. But c = 1 since both polynomials
are monic. �

Definition. The polynomial µα,K is called the minimal polynomial of
α over K.

Practical remark:

- From the definition of the minimal polynomial, it follows that if P ∈
K[X] satisfies P (α) = 0, then µα,K |P ; if moreover P is monic and
irreducible then P = µα,K .

Therefore, to compute the minimal polynomial of a given α ∈ F , one
may proceed as follows:
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1) Find a monic polynomial P ∈ K[X] satisfying P (α) = 0.

2) If P is irreducible, then P = µα,K and we are done. If P is not
irreducible, then decompose P as a product of monic irreducible factors.
Then µα,K will be the unique monic irreducible factor of P for which
α is a root.

Examples.

- Let us compute µi,R. We know that i2 = −1, so P := X2 + 1 ∈ R[X]
is a monic polynomial of R[X] satisfying P (i) = 0. Now X2 + 1 is
irreducible in R[X], since it has degree 2 and has no roots in R.
Hence µi,R = X2 + 1.

- Let us compute µα,Q, where α :=
1 + i

√
19

2
. We would like to find a

polynomial P ∈ Q[X] such that P (α) = 0. If we take a look to the
definition of α, the only thing which is not in Q is i

√
19, so we should

get rid of it, the best way being squaring it. So we write
2α− 1 = i

√
19, and thus we have (2α− 1)2 = −19. Hene we get

4α2 − 4α+ 20 = 0. Since we want P to be monic, we divide
everything by 4, and we get P (α) = 0, for P = X2 −X + 5. This
polynomial P is irreducible (check it; there is a lot of ways to
proceed), hence µα,Q = X2 −X + 5.

- Let us compute µj,Q. We know that j3 = 1, so P := X3 − 1 ∈ Q[X]
satisfies P (j) = 0 and is monic. However, P is not irreducible, since
P (1) = 0, so P has a root. So we have to factor P into a product of
monic irreducible polynomials in Q[X]. We get easily
P = (X − 1)(X2 +X + 1), and each factor is monic and irreducible
(check it), so µj,Q should be one of them. We have j − 1 6= 0, so
µj,Q 6= X − 1, since j must be a root of its minimal polynomial.
Hence µj,Q = X2 +X + 1, which is consistent with the fact that we
know the relation j2 + j + 1 = 0. One could have also use this
relation to compute µj,Q (it would have been quicker).

Theorem 8.8. Let F/K be a field extension. Then α ∈ F is algebraic
over K if and only if K(α)/K is has finite degree.

In this case, a K-basis of K(α) is given by 1, α, · · · , αd−1, where d =
deg(µα,K). In particular, we have the equality

[K(α) : K] = deg(µα,K)

Proof. Assume first that α is transcendental over K. Then for all
n ≥ 1, the elements 1, α, · · · , αn−1, i ≥ 0 are linearly independent over
K. Indeed, assume that a0, · · · , an−1 ∈ K are satisfying

a0 + a1α+ · · · + an−1α
n−1 = 0.
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Then the polynomial P = a0 + a1X + · · ·+ an−1X
n−1 ∈ K[X] satisfies

P (α) = 0, so P = 0 by assumption. Hence a0 = a1 = · · · = an−1 = 0.

Hence the dimension of K(α) over K is necessarily infinite. Otherwise,
the dimK K(α) + 1 elements 1, α, · · · , αdimK K(α) would be linearly de-
pendent over K.

Now assume that α is algebraic over K, and let d be the degree of its
minimal polynomial over K.

We first proceed to show that K(α) = {P (α), P ∈ K[X]}. Since α and
K are contained in K(α), and since K(α) is closed under multiplication
and addition, it follows that K(α) ⊃ {P (α), P ∈ K[X]}.
Now to prove the other inclusion, it is enough to show that {P (α), P ∈
K[X]} is a subfield of F containg K and α. The only non obvious thing
to prove is that if P (α) 6= 0, then P (α)−1 = U(α) for some U ∈ K[X].

Since P (α) 6= 0, P is not divisible by µα,K . Since µα,K is irreducible, it
implies that h.c.f(P, αµ,K) = 1, so there exist U, V ∈ K[X] such that
U(X)P (X) + V (X)µα,K(X) = 1. We then have U(α)P (α) = 1 since
µK,α(α) = 0. This proves that P (α)−1 = U(α) for some U ∈ K[X].

We are now able to finish the proof of the theorem. For P ∈ K[X],
write

P = µα,KQ1 +Q2, Q2 = 0 or deg(Q2) < d

We then get P (α) = Q2(α). Since Q2 = 0 or deg(Q2) < d, it follows
that

P (α) = ad−1α
d−1 + · · · + a1α+ a0

for some ai ∈ K. Using the previous point, it shows that

K(α) = {ad−1α
d−1 + · · · + a1α+ a0, ai ∈ K}

It just remains to show that 1, α, · · · , αd−1 are linearly independent
over K. Assume that a0, · · · , ad−1 ∈ K are satisfying

a0 + a1α+ · · · + ad−1α
d−1 = 0.

Then the polynomial P = a0 + a1X + · · · + ad−1X
d−1 ∈ K[X] satisfies

P (α) = 0, so P ∈ Iα by assumption. Hence µα,K divides P . If P 6= 0,
it implies that deg(P ) ≥ d, which is a contradiction. Hence P = 0 and
so a0 = a1 = · · · = ad−1 = 0. �

Example. Let α = 3
√

2 ∈ C. Let us compute [Q(α) : Q].

We have to find the minimal polynomial of α over Q. We have
α3 − 2 = 0, so P (X) = X3 − 2 ∈ Q[X] satisfies P (α) = 0. It is monic,
and irreducible by Einsenstein criterion. Hence µα,Q = X3 − 2, and
[Q(α) : Q] = 3.
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9. Ruler and compass constructions

We are going to apply the the formalism of field extensions to solve
geometric problems going back to the Antiquity.

Among other problems, the Greeks asked the following geometric prob-
lems:

- Is the trissection of a given angle θ is always possible just using ruler
and compass?

- Can we construct a square with same area as the unit circle using
ruler and compass?

- Can we construct a cube whose volume is twice the volume of the
unit cube using ruler and compass ?

- Can we construct a regular n-gon using ruler and compass?

They were unable to answer these questions. We propose to study the
question of constructibility by ruler and compass in full generality and
to solve the previous problems.

9.1. Definitions and first results.

Definition. 1) Let A0 be a set of points in the real plane containing
the points (0, 0), (1, 0), (0, 1).

We say that a point P of R2 is constructible by ruler and compass
(CRC) from A0 if there exist of a sequence of points P1, · · · , Pn = P
satisfying the following property:

For 1 ≤ i ≤ n, Pi is constructed from the points of Ai−1 := A0 ∪
{P1, · · · , Pi−1} by intersection any two of the following geometric ob-
jects:

- a line passing through two points of Ai−1

- a circle centered on a point of Ai−1 and whose radius is the distance
between two points of Ai−1

2) We say that α = x + iy ∈ C is CRC from A0 if (x, y) is CRC from
A0.

3) We say that P = (x, y) (resp. α ∈ C) is absolutely CRC if it is CRC
from {(0, 0), (1, 0), (0, 1)}.
Remark 9.1. Recall that using a ruler and a compass, we can con-
struct perpendiculars and parallels passing through constructible points,
and in particular projections of a constructible point on the axes of the
real plane. Hence (x, y) is CRC from A0 if and only if (x, 0) and (0, y)
are. But (0, y) is CRC if and only if (y, 0) is, so (x, y) is CRC from A0

if and only if the real numbers x, y are. It follows also that x+ iy ∈ C
is CRC from A0 if and only if x, y are.
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The previous remark shows that it is enough to investigate which real
numbers are CRC from A0.

It is time to give examples of constructible real numbers.

Lemma 9.2. Every α ∈ Q is constructible from any set A0.

Proof. Indeed, one can assume that α > 0, since if α is constructible,
so is −α (use the compass to construct (−α, 0) from (α, 0)).

Write α = p
q
, p, q. Since (1, 0), (0, 1) ∈ A0, one can construct the points

P = (0, p), Q = (q, 0), Q′ = (q+1, 0). Now let M be the intersection of
the line (PQ) with the line parallel to the y−axis and passing through
Q′. The use of Thales theorem shows that M ′ = (q + 1, p

q
). Hence p

q
is

constructible by the previous remark. �

Proposition 9.3. If α, β ∈ R are CRC from A0, so are α±β, αβ and
α−1.

Proof. For α ± β, it is obvious. For the other cases, one can assume
that α, β > 0.

For αβ, let P = (α, 0), Q = (α + 1, 0), Q′ = (α + 1,−β) (Q′ is easily
seen to be constructible). Thales theorem show that the intersection
of the line (QQ′) with the y-axis is the point (0, αβ).

For α−1, let P = (0, 1) and Q = (α, 0). From these points, one can
construct Q′ = (α + 1, 0). Now let M be the intersection of the line
(PQ) with the line parallel to the y − axis and passing through Q′.
The use of Thales theorem shows that M ′ = (α + 1, 1

α
). Hence α−1 is

constructible.

�

Remark 9.4. One can show that this result is still true if α, β ∈ C.

Proposition 9.5. If d ∈ R, d ≥ 0 is CRC from A0, then
√
d is con-

structible from A0.

Proof. If d = 0, there is nothing to prove, so we can assume d 6= 0.

Assume first that d > 1. Since d is constructible, so are d−1 and d+1.
Now 1

2
is constructible as well, so d−1

2
and d+1

2
are constructible. Now

let us consider the circle centered in P = (d−1
2
, 0) with radius d+1

2
, and

let us take the intersection Q = (0, y) with the y-axis.

Then OPQ is a rectangle triangle, so we have y2 + (d−1
2

)2 = (d−1
2

)2.

One can easily deduce from this equation that y =
√
d. Hence (0,

√
d)

is constructible, so
√
d is constructible.

Now if 0 < d < 1, then 1
d
> 1, so

√

1

d
=

1√
d

is constructible, and thus

its inverse
√
d is constructible.
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�

Remark 9.6. One can show that this result is still true if d ∈ C.

Since a complex number α = x+ iy is CRC from A0 if and only if x, y
are, it is enough to investigate which real numbers are CRC from A0.

Theorem 9.7. Let K be a subfield of R, and assume that every element
of K is CRC from A0.

1) Assume that α1, · · · , αn ∈ R are CRC from A0. Then every element
of K(α1, · · · , αn) is CRC from A0.

2) Assume that K ⊆ F ⊆ R. If [F : K] ≤ 2, then every element of F
is CRC from A0.

Proof. 1) Since every element of K(α1, · · · , αn) is a rational fraction in
α1, · · · , αn with coefficients in K, it is enough to show that if α, β ∈
K(α1, · · · , αn) are CRC from A0, then α + β, αβ and α−1 are CRC
from A0. This has been proved in the previous section.

2) If [F : K] = 1, then F = K and there is nothing to prove. If

[F : K] = 2, we have F = K(
√
d) for some d which is not a square in

K. Since F ⊂ R, we necessarily have d > 0. By the previous point,
it is enough to show that

√
d is constructible, which has been already

done. �

This result initiates a link between constructibility by ruler and com-
pass and field extensions. The goal of the next section is to investigate
further this relation.

9.2. Ruler and compass constructions and field extensions. We
now start to investigate the following question:

Let A0 be a finite set of points of R2 containing (0, 0), (1, 0) and (0, 1).

What are the reals numbers which are CRC from A0 ?

Definition. If K be any subfield of R and A = {(x1, y1), · · · , (xn, yn)}
is a finite subset of R2, we set

K(A) := K(x1, y1, · · · , xn, yn) ⊆ R
Remark 9.8. By a previous result, every element of Q(A0) is CRC
from A0.

The following result gives a first link between our geometric problem
and field extensions (even it has a limited interest):

Proposition 9.9. Let α ∈ R. Then α is CRC from A0 if and only if
every element of Q(A0)(α) is CRC from A0.
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Proof. Assume that α is CRC from A0. Since every element of Q(A0) is
CRC from A0, so is every element of Q(A0)(α). The other implication
is obvious since Q(A0)(α) contains α. �

We now investigate the structure of the extension Q(A0)(α)/Q(A0).

Lemma 9.10. Let B be a finite set of points of R2, and let P be ob-
tained by intersecting by intersection any two of the following geometric
objects:

- a line passing through two points of B
- a circle centered on a point of B and whose radius is the distance
between two points of B. Then Q(B) ⊆ Q(B ∪ {P}) and we have

[Q(B ∪ {P}) : Q(B)] ≤ 2

Proof. If P = (x, y), it follows from the properties of field extensions
and the definitions that we have

Q(B ∪ {P}) = Q(B)(x, y)

In particular Q(B) ⊆ Q(B ∪ {P}).
For convenience, we will say the lines and circles described above are
constructed on B.

We first take a closer look to the equations of the lines and circles
constructed on B.

Let P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2) be 3 points of B. Suppose
that P0 and P1 are distinct.

- The equation of the line (P0P1) is given by

(x1 − x0)(y − y0) − (y1 − y0)(x− x0) = 0

Hence the equation has the form

ax+ by + c = 0 for some a, b, c ∈ Q(B)

- The equation of the circle centered in P3 with radius P0P1 is given by

(x− x3)
2 + (y − y3)

2 = (x1 − x0)
2 + (y1 − y0)

2

hence it has the form

x2 + y2 + ax+ by + c = 0 for some a, b, c ∈ Q(B)

Now assume that P = (x, y) is obtained by intersecting two lines con-
structed on B. Hence (x, y) is the solution of a linear system of the
form

{

ax+ by + c = 0
a′x+ b′y + c′ = 0
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for some a, b, c, a′, b,′ , c′ ∈ Q(B).

Using Cramer’s Rule for example (or by solving the system directly),
it is easy to see that x, y ∈ Q(B). In this case we have

Q(B)(x, y) = Q(B)(x)(y) = Q(B)(y) = Q(B)

In particular, [Q(B ∪ {P}) : Q(B)] = 1.

Assume now that P = (x, y) is the intersection of a line and a circle
constructed on B. Hence (x, y) is the solution of a linear system of the
form

{

ax+ by + c = 0
x2 + y2 + a′x+ b′y + c′ = 0

for some a, b, a′, b′, c′ ∈ Q(B).

Notice that we have by construction (a, b) 6= (0, 0). Say for example

that b 6= 0, so y = −ax+ c

b
. It follows that y ∈ Q(B)(x). Hence we

have

Q(B)(x, y) = Q(B)(x)(y) = Q(B)(x)

Now plugging the expression of y is the second equation, we get

ux2 + vx+ w = 0 for some u, v, w ∈ Q(B)

Hence µx,Q(B)|uX2 + vX + w, and we have

[Q(B)(x) : Q(B)] = deg(µx,Q(B)) ≤ 2

Finally assume that P = (x, y) is the intersection of two circles con-
structed on B. Hence (x, y) is the solution of a linear system of the
form

{

x2 + y2 + ax+ by + c = 0
x2 + y2 + a′x+ by′ + c′ = 0

for some a, b, c, a′, b′, c′ ∈ Q(B).

By construction, we have (a, b) 6= (a′, b′) (otherwise, the two circles are
either eqaul or do not intersect), (a−a′, b−b′) 6= (0, 0). By substracting
the two equations, we go back to the previous case.

�

Definition. A field extension F/K is said to be 2-decomposable if there
exists a tower of subfields

K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = F

satisfying [Ki : Ki−1] ≤ 2 for 1 ≤ i ≤ m.
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Remark 9.11. It follows from the definition and the Tower Formula
that if F/K is 2-decomposable, then [F : K] is a power of 2.

Examples.

- The extension Q( 4
√

2)/Q is 2-decomposable. Indeed, we have

Q ⊆ Q(
√

2) ⊆ Q(
4
√

2)

We know that [Q(
√

2) : Q] = 2. Morever it is easy to check that
[Q( 4

√
2) : Q] = 4, so by the Tower formula [Q( 4

√
2) : Q(

√
2)] = 2, so we

are done.

- The extension Q( 3
√

2)/Q has degree 3, so it is not 2-decomposable.

Lemma 9.12. Assume that K ⊆ F ⊆ R, and that F/K is a 2-
decomposable field extension. If every element of K is CRC from A0,
then so is every element of F .

Proof. Consider a tower of subfields

K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = F

satisfying [Ki : Ki−1] ≤ 2 for 1 ≤ i ≤ m−1. Since F ⊆ R, then Ki ⊆ R
for all i. By assumption every element of K0 = K is CRC from A0.
Since [K1 : K0] ≤ 2, then so is every element of K1. It implies in turns
that it is true for every element of K2, and by induction we obtain the
result. �

We are now ready to prove the main theorem of this section.

Theorem 9.13. Let α ∈ R. Then α is CRC from A0 if and only if
there exists a field F ⊆ R such that Q(A0)(α) ⊆ F and F/Q(A0) is
2-decomposable.

Proof. Assume first that is α is CRC from A0, that is P = (α, 0) is
CRC from A0. Let P1, · · · , Pm = P points as in the definition of a
constructible set, and let Ai = Ai−1 ∪ {Pi} for all i.

As observed before, we have Q(Ai−1) ⊆ Q(Ai) for all i, and then
Q(A0) ⊆ Q(Ai).

We have [Q(Ai) : Q(Ai−1)] ≤ 2 by a previous result, hence the ex-
tension Q(Am)/Q(A0) is 2-decomposable. Now by construction Am

contains the coordinates of the point P , so it constains α. Hence
α ∈ Q(Am). Since Q(A0) ⊆ Q(Am), we get Q(A0)(α) ⊆ Q(Am).

Conversely, assume that Q(A0)(α) ⊆ F ⊆ R, where F/Q(A0) is 2-
decomposable. To prove that α is CRC from A0, it is enough to prove
that every element of Q(A0)(α) is CRC from A0. For, it is sufficient
to prove that every element of F is CRC from A0.
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But since F/Q(A0) is 2-decomposable and F ⊂ R, then every element
of F is CRC from A0 by the previous lemma, since we know that every
element of Q(A0) is CRC from A0.

�

Corollary 9.14. If α ∈ R is CRC from A0 then α is algebraic over
Q(A0) and [Q(A0)(α) : Q(A0)] is a power of 2.

Proof. Since α is CRC from A0, it follows from the previous theorem
that Q(A0)(α) is contained in a 2-decomposable extension F/Q(A0).
Then the Tower Degree Formula implies that [Q(A0)(α) : Q(A0)]
divides [F : Q(A0)], which is a power of 2 since F/Q(A0) is a 2-
decomposable field extension. Hence [Q(A0)(α) : Q(A0)] is a power of
2 as well.

�

Observe that if A0 = {(0, 0), (1, 0), (0, 1)}, then Q(A0) = Q. Hence we
get the following results:

Corollary 9.15. Let α ∈ R. Then α is absolutely CRC if and only
if there exists a field F ⊆ R such that Q(α) ⊆ F and F/Q is 2-
decomposable.

Corollary 9.16 (Wantzel’s Theorem). If α ∈ R is absolutely CRC
then α is algebraic over Q and [Q(α) : Q] is a power of 2.

Warning: One can construct infinitely many α ∈ R which satisfy
[Q(α) : Q] = 4 but such that α is not absolutely CRC (see exercise
sheet), so the condition on the degree is not necessary but not sufficient.

9.3. Applications.

9.3.1. Duplicating the cube. We are interested here in the following
question: can we contruct a cube with volume equal to 2 units ?

Clearly this is equivalent to determine if 3
√

2 is absolutely constructible.
But we know that [Q( 3

√
2) : Q] = 3, which is not a power of 2, so 3

√
2 is

not absolutely constructible, and the question has a negative answer.

9.3.2. Circle quadrature. The circle quadrature is the following prob-
lem: can we construct of square with same area than the unit circle?

Here we want to determine if
√
π is absolutely CRC. Observe that

Q ⊆ Q(π) ⊆ Q(
√
π). Since π is transcendental, then [Q(π) : Q] is

infinite, and so is [Q(
√
π) : Q]. Hence π is not absolutely constructible,

and the question has a negative answer.
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9.3.3. Trissection of angles. It is well-known that it is always possible
to construct θ/2 from an angle θ using ruler and compass. But what
about trissection ? Here we consider the following problem:

Given an angle θ, can we construct θ/3 using ruler and compass ?

One can reformulate the problem as follows:

given the set of points A0 := {(0, 0), (0, 1), (1, 0), (cos(θ), sin(θ))}, can
we construct P = (cos(θ/3), sin(θ/3)) from A0?

We start by simplifying the problem:

set A′
0 = {(0, 0), (0, 1), (1, 0), (cos(θ), 0)}. We claim that P is CRC

from A0 if and only if it is CRC from A′
0.

From the definitions, one can see that it is enough to prove that
(cos(θ), sin(θ)) is constructible from A′

0, and that (cos(θ), 0) is con-
structible from A0 (a picture may be useful to help you understanding
why).

The proof of this fact is very easy: starting from A′
0, we can construct

the point Q = (cos(θ), sin(θ)), since Q is one of the intersection points
of the line x = cos(θ) with the unit circle, and starting from A0, we
can construct the point Q′ = (cos(θ), 0) by projection on the x-axis.

Let us continue to simplify the question a bit:

reasoning as previously, we see that the point (cos(θ/3), sin(θ/3)) is
CRC from A′

0 if and only if (cos(θ/3), 0) is.

Indeed, if (cos(θ/3), sin(θ/3)) is constructible, then we know that the
point (cos(θ/3), 0) is constructible, and conversely if (cos(θ/3), 0) is
constructible, then (cos(θ/3), sin(θ/3)) is one of the intersection points
of the line x = cos(θ/3) with the unit circle.

Hence the question becomes:

is cos(θ/3) CRC from A′
0 := {(0, 0), (0, 1), (1, 0), (cos(θ), 0)} ?

First observe that Q(A′
0) = Q(cos(θ)), so we need to determine on wich

conditions the extension Q(cos(θ))(cos(θ/3))/Q(cos(θ)) is contained in
a subfield F over R such that F/Q(cos(θ)) is 2-decomposable.

The formula

cos(θ) = 4 cos(θ/3)3 − 3 cos(θ/3)

implies that [Q(cos(θ))(cos(θ/3)) : Q(cos(θ))] ≤ 3.

Indeed, the polynomial P = 4X3−3X−cos(θ) ∈ Q(cos(θ))[X] satisfies
P (cos(θ/3)) = 0. Hence µcos(θ/3),Q(cos(θ))|P , so we get

[Q(cos(θ))(cos(θ/3)) : Q(cos(θ))] = deg(µcos(θ/3),Q(cos(θ))) ≤ 3

If [Q(cos(θ))(cos(θ/3)) : Q(cos(θ))] = 3, it implies that cos(θ/3) is not
CRC from A′

0 by a previous result.
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If [Q(cos(θ))(cos(θ/3)) : Q(cos(θ))] ≤ 2, then we know that every
element of Q(cos(θ))(cos(θ/3)) is CRC from A′

0; in particular so is
cos(θ/3).

Hence we have

cos(θ/3) is CRC from A′
0 ⇐⇒ [Q(cos(θ))(cos(θ/3)) : Q(cos(θ))] ≤ 2

This is equivalent to say that deg(µcos(θ/3)) < 3. Since deg(µcos(θ/3))|P ,
this is also equivalent to say that P is not irreducible in Q(cos(θ))[X].
Since P has degree 3, this is equivalent to say that P has a root in
Q(cos(θ))[X].

Putting things together, we proved the following theorem:

Theorem 9.17. The trissection of the angle θ using ruler and compass
is possible if and only if the polynomial 4X3 − 3X − cos(θ) has a root
in Q(cos(θ)).

Examples.

- Let θ = 2π/3. Then cos(θ) = −1/2 and so Q(cos(θ)) = Q. We then
have to decide if the polynomial 4X3 − 3X + 1/2 has a root in Q.
This is equivalent to check for the roots of 8X3 − 6X + 1. Here the
possible roots are ±1,±1/2,±1/4,±1/8, and one can check that none
of these rational numbers are roots of 8X3 − 6X + 1.

Hence 2π/9 cannot be constructed from 2π/3 using ruler and
compass.

- Let θ = π/4. Then cos(θ) = 1/
√

2, an so Q(cos(θ)) = Q(
√

2). We
then have to decide if the polynomial 4X3 − 3X + 1/

√
2 has a root in

Q(
√

2). One can check that −1/
√

2 is effectively a root of this
polynomial.

Hence π/12 can be constructed from π/4 using ruler and compass.

There is an easier way to see it here. Since cos(π/6) =
√

3/2, we can
construct cos(π/6) and then the angle π/6 using ruler and compass.
Then we construct the angle π/12 from the angle π/6, since bissection
of angles is always possible.

9.3.4. Construction of regular n-gons. Here we are interested in con-
structing the regular n-gon whose points lie on the unit circle. Clearly,
it is equivalent to construct the point P = (cos(2π/n), sin(2π/n)), since
the other points of the n-gon can be obtained from P and (1, 0) using
the compass. Once again, the construction of P is equivalent to the
construction of cos(2π/n). Hence the question is equivalent to:

is cos(2π/n) absolutely CRC ?

We don’t have enough material to answer fully this question, but we
can give few examples.
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If n = 2m, then the answer is positive, since starting from the angle π,
one can construct 2π/n by successive bissections in this case.

The case of odd n is funnier. If n = 3, then cos(2π/3) = −1/2
is constructible. If n = 9, we saw in the previous paragraph that
[Q(cos(2π/9)) : Q] = 3, so 2π/9 is not constructible.

We can also show that the heptagon (n = 7) is not constructible.
However, the pentagon (n = 5) and the heptakaidecagon (n = 17) are
constructible. See the exercise sheet for the case n = 5.
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10. Symmetric polynomials

Let R be a commutative ring, and let P ∈ R[X1, . . . , Xn] be a polyno-
mial in n variables.

Remember that such P can be written uniquely under the form

P =
∑

am1,m2,...,mn
Xm1

1 · · ·Xmn

n , am1,m2,...,mn
∈ R almost all zero

Example: n = 3, f = X2
1 + 3X3

2 − 8X2X3 + 45.

Definition. We say that f is symmetric if it is unchanged by any
permutation π of the n variables. This means

f(X1, . . . , Xn) = f(Xπ(1), . . . , Xπ(n)) for all permutations π ∈ Sn.

Examples:

- If n = 3, X1 +X2 +X3 is symmetric.

- If n = 4, X1 +X2 +X3 is NOT symmetric. Indeed, if we apply the
permutation which exchanges 1 and 4, and leaves 2 and 3 invariant, we
get a different polynomial.

- If n = 3, X1X2X3 is symmetric.

Elements of R (viewed as polynomials of degree zero) are symmetric, so
in particular 1 and −1 are. Moreover, if P1 and P2 are symmetric, then
so are P1 +P2 and P1P2 (it follows directly from the definition). It fol-
lows that the symmetric polynomials form a subring of R[X1, · · · , Xn].

Definition. The elementary symmetric polynomials σ1, . . . , σn ∈ R[X1, . . . , Xn]
are the polynomials

σk =
∑

1≤i1<i2<···<ik≤n

Xi1Xi2 · · ·Xik .

For example, σ1 = X1 +X2 + · · ·Xn, σn = X1X2 · · ·Xn.

These polynomials are symmetric.

Proposition 10.1. Let K be a field and let P = anT
n+an−1T

n−1+· · ·+
a1T + a0 ∈ K[T ], deg(P ) = n ≥ 1. Let α1, · · · , αn the (not necessarily
distinct) roots of P in a suitable field extension L/K. Then we have :

For all 1 ≤ k ≤ n, σk(α1, · · · , αn) = (−1)k an−k

an

.

Proof. We have P = an(T − α1) · · · (T − αn). To get the coefficient of
T n−k, we have to choose the term ”T” in n−k factors in every possible
ways and choose a term of the form ” − αi” in the remaining factors,
and the choices are made in an ordered sequence (we choose first T or
−α1 in the first factor, then T or −α2 in the second factor...).
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Hence the coefficient of T n−k is an(−1)k
∑

1≤i1<i2<···<ik≤n

αi1αi2 · · ·αik ,

that is an(−1)kσl(α1, · · · , αn). But this coefficient is also equal to an−k,
hence the formula. �

Example: If P = a2X
2 + a1X + a0, and if α1, α2 are the two roots of

P , then α1 + α2 = −a1

a2

and α1α2 = a0

a2

.

Let’s check it: we have for example

α1 =
−a1 +

√

a2
1 − 4a0a2

2a2

, α2 =
−a1 −

√

a2
1 − 4a0a2

2a2

, so

α1 + α2 = −2a1

2a2

= −a1

a2

, and

α1α2 =
(−a1)

2 − (a2
1 − 4a0a2)

(2a2)2
=

4a0a2

4a2
2

=
a0

a2

.

Definition. A monomial is an element of R[X1, · · · , Xn] of the form
cXm1

1 · · ·Xmn
n , c ∈ R.

The degree of a monomial cXm1

1 · · ·Xmn
n , c 6= 0 is m1 + · · · +mn. The

degree of a polynomial P is the maximum of degrees of the non-zero
monomials appearing in P .

We say that a polynomial P ∈ R[X1, · · · , Xn] is homogeneous of degree
d ≥ 0 if it is a sum of monomials of same degree d.

Each polynomial P ∈ R[X1, . . . , Xn] of degree can be written uniquely
as a sum of homogeneous polynomials (just collect the monomials of
same degree appearing in P ).

Example: the polynomial σk is homogeneous of degree k.

Remark 10.2. It follows from the definition that if P ∈ R[X1, . . . , Xn]
is homogeneous of degree d, then for all r ∈ R, we have

P (rX1, . . . , rXn) = rdP (X1, . . . , Xn),

which explains the name of ”homogeneous polynomial”.

Theorem 10.3 (Fundamental theorem on symmetric polynomials).
Let R be a commutative ring. For any symmetric polynomial P ∈
R[X1, . . . , Xn], there exists a unique polynomial Q with coefficients in
R such that P = Q(σ1, · · · , σn).

Proof. We first prove that if such a Q exists, then it is unique. Assume
that P = Q1(σ1, · · · , σn) = Q2(σ1, · · · , σn), so (Q1−Q2)(σ1, · · · , σn) =
0.

We will prove that S(σ1, · · · , σn) = 0 for some polynomial S, then
S = 0. Uniqueness will follow.
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We will do it by induction on n. For n = 1, this is clear.

Now assume that the property is true for polynomials in n variables,
and assume that the property is NOT true for polynomials in n + 1
variables,so there exists S 6= 0 of minimal degree m such that

S(σ1, · · · , σn+1) = 0(∗)
We will denote by Σ1, · · · ,Σn the elementary symmetric polynomials
in the variables X1 · · · , Xn. Notice that

σk(X1, · · · , Xn, 0) = Σk(∗∗)

We can write S = SmX
m
n+1+· · ·+S1Xn+S0, S0, · · · , Sm ∈ R[X1, · · · , Xn].

Assume first S0 = 0, then we can write S = XnU , with U 6= 0 of degree
m − 1. By assumption on S, we get σn+1U(σ1, · · · , σn+1) = 0, and so
U(σ1, · · · , σn+1) = 0, but this contradicts the minimality of m.

Therefore S0 6= 0, and replacing Xn+1 by 0 in (∗) and using (∗∗), we
get S0(Σ1,Σn) = 0. By induction, S0 = 0, contradiction.

Now to prove the existence, we will give an effective algorithm.

First write P = Pi1 + · · ·+Pir , where each Pij is homogeneous of degree
ij. Now since this decomposition is unique, one can see that each Pij

is symmetric (Check it !!!)

Therefore it is sufficient to do the case of homogeneous polynomials.
Now assume that P is homogeneous and symmetric.

We order Nn as follows: we say that (m1, · · · ,mr) ≥ (m′
1, · · · ,m′

n) if
either m1 > m′

1, either there exists k such that m1 = m′
1, · · ·mk−1 =

m′
k−1 and mk > m′

k.

Now take (m1, · · · ,mn) maximal among the non-zero monomials
am1,··· ,mn

Xm1

1 · · ·Xmn
n of P . We denote it by D(P ).

By choice of D(P ), we have m1 ≥ m2. If m2 < m3 , then applying a
permutation exchanging X2 and X3 and fixing 1, we find a non-zero
monomial such that the sequence of powers is (m1,m3,m2, · · · ). But
this is greater than D(P ).

Repeating the argument, we see that D(P ) = (m1, · · · ,mn) with m1 ≥
m2 ≥ · · · ≥ mn. Therefore D(P ) is also the unique non-decreasing
sequence such that m1 is maximal among the non-zero monomials
am1,··· ,mn

Xm1

1 · · ·Xmn
n of P .

Here is the algorithm for P homogeneous and symmetric:

1) Among the non-zero monomials am1,··· ,mn
Xm1

1 · · ·Xmn
n of P , find

(m1, · · · ,mn), with m1 maximal and m1 ≥ m2 ≥ · · · ≥ mn.

2) Set P1 = P − am1,··· ,mn
σm1−m2

1 σm2−m3

2 · · · σmn−1−mn

n−1 σmn
n .

One can check that P1 is symmetric, and that P1 = 0 or D(P1) < D(P ).
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3) If P1 = 0, then stop. Otherwise, replace P by P1 and goto Step 1).

The algorithm stops necessarily. �

Example: Let P = X2
1X3 + X2

1X2 + X2
2X1 + X2

2X3 + X2
3X1 + X2

3X2.
This is an homogeneous polynomial of degree 3. Here D(P ) = (2, 1, 0).

So we set P1 = P − σ2−1
1 σ1−0

2 σ0
3 = P − σ1σ2. One can check that

P1 = −3X1X2X3, and therefore P = σ1σ2 − 3σ3.

Example: Express the symmetric polynomial

X2
1 (X2X3 +X2X4 +X3X4) +X2

2 (X1X3 +X1X4 +X3X4)+
X2

3 (X1X2 +X1X4 +X2X4) +X2
4 (X1X2 +X1X3 +X2X3)

in terms of the σi.

This is an homogeneous polynomial (of degree 4). We have D(P ) =
(2, 1, 1).

We then set P1 = P − 1.σ2−1
1 σ1−1

2 σ1
3 = P1 − σ1σ3.

But

σ1σ3 = (X1 +X2 +X3 +X4)(X1X2X3 +X1X2X4 +X1X3X4 +X2X3X4)

and so

P1 = −4X1X2X3X4 = −4σ4.

Therefore P = σ1σ3 − 4σ4.

Theorem 10.4. Let K be a field. Let P ∈ K[T ] be a polynomial of
degree n ≥ 1, and let α1, . . . , αn be the (non necessarily distinct) roots
of P in a larger field L containing K. Then for every symmetric

polynomial f ∈ K[X1, . . . , Xn], we have

f(α1, . . . , αn) ∈ K.

In other words, every symmetric polynomial expression in the roots of
P is an element of K.

More precisely, if P = anT
n + . . .+ a1T + a0 and f has degree d, then

there exists a polynomial h ∈ K[Y0, . . . , Yn−1, Yn] such that

f(α1, . . . , αn) =
h(a0, . . . , an)

ad
n

.

In particular, if P is monic, every symmetric polynomial expression in
the roots of P is a polynomial expression in the coefficients of P .

Proof. Let us decompose f into a sum of homogeneous polynomials

f = f0 + f1 + . . .+ fd,

wheere each fi is homogeneous of degree i.
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By the fundamental theorem on symmetric polynomials, we can write

fi(X1, . . . , Xn) = Qi(σ1(X1, . . . , Xn), . . . , σn(X1, . . . , Xn)),

for some polynomial Qi ∈ K[T1, . . . , Tn]. Since fi is homogeneous of
degre i, we have

fi(anX1, . . . , anXn) = ai
nfi(X1, . . . , Xn).

We then obtain

ad
nfi(X1, . . . , Xn) = ad−i

n ai
ifi(X1, . . . , Xn) = ad−i

n fi(anX1, . . . , anXn).

But since σk is homogeneous of degree k, we also have

σk(anX1, . . . , anXn) = ak
nσk,

and therefore

Qi(σ1(anX1, . . . , anXn), . . . , σn(anX1, . . . , anXn)) = Qi(anσ1, . . . , a
n
nσn).

We then finally get

ad
nfi(X1, . . . , Xn) = ad−i

n Qi(anσ1, . . . , a
n
nσn).

By Proposition 10.1, we get

ad
nfi(α1, . . . , αn) = ad−i

n Qi(−an−1, an−2an, . . . , (−1)na0a
n−1
n ).

Now summing over i gives the result. �

Example. Let P = a2X
2 + a1X + a0 ∈ K[X], and let α1, α2 be the

two roots of P (in a suitable field). Then from the previous result, we
should have

α2
1 + α2

2 ∈ K,

and in fact a2
2(α

2
1 +α2

2) should be a polynomial expression in a0, a1, a2.

Let us check it. We have

α2
1 + α2

2 = (α1 + α2)
2 − 2α1α2 = σ1(α1, α2)

2 − 2σ2(α1, α2).

By Proposition 10.1, we get

α2
1 + α2

2 =
a2

1

a2
2

− 2
a0

a2

=
a2

1 − 2a0a2

a2
2

.

Proposition 10.5. Let K be a field. Let P = anT
n + . . .+ a1T + a0 ∈

K[T ] be a polynomial of degree n ≥ 1, and let α1, . . . , αn be the (non
necessarily distinct) roots of P in a larger field L containing K. Then
the element

disc(P ) = an(n−1)
n ∆(α1, . . . , αn) = an(n−1)

n

∏

1≤i<j≤n

(αi − αj)
2

is an element of K, which is even a polynomial expression into the
coefficients of P .

Moreover, disc(P ) 6= 0 if and only if P has no multiple roots in L.
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Proof. Set

∆ =
∏

1≤i<j≤n

(Xi −Xj)
2 ∈ K[X1, . . . , Xn].

We claim that ∆ is symmetric.

To see it, consider the Vandermonde matrix

M = (X i−1
j )1≤i,j≤n ∈ Mn(K(X1, . . . , Xn)).

It is well-known that the determinant of this matrix is

det(M) =
∏

1≤i<j≤n

(Xi −Xj).

Hence ∆ = det(M)2. Now let τ ∈ Sn be a permutation. Then we have

∆(Xτ(1), . . . , Xτ(n)) = det(Mτ )
2,

where

Mτ = (X i−1
τ(j))1≤i,j≤n,

since a permutation of the variables the variables X1, . . . , Xn induces
the same permutation of the columns of M . Since Mτ is just obtained
by a permutation of the columns of M , we have

det(Mτ ) = ± det(M),

and therefore

∆(Xτ(1), . . . , Xτ(n)) = det(Mτ )
2 = det(M)2 = ∆(X1, . . . , Xn).

Hence ∆ is a symmetric polynomial of degree n(n−1). By the previous
theorem, the element

disc(P ) = an(n−1)
n ∆(α1, . . . , αn) = an(n−1)

n

∏

1≤i<j≤n

(αi − αj)
2

is a polynomial expression into the coefficients of P , called the discrim-
inant of P .

By definition, disc(P ) 6= 0 if and only if α1, . . . , αn are distinct.

�

Definition. The element disc(P ) is called the discriminant of P .

Example: if P = a2T
2 + a1T + a0 ∈ K[T ], we have

disc(P ) = a2
2(α1 − α2)

2 = a2
2((α1 + α2)

2 − 4α1α2).

Since we have

α1 + α2 = σ1(α1, α2) = −a1

a2

,

and

α1α2 = σ2(α1, α2) =
a0

a2

,
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we get

disc(P ) = a2
2(
a2

1

a2
2

− 4
a0

a2

) = a2
1 − 4a2a0,

which is the classical definition of the discriminant of a polynomial of
degree 2.

Example: Assume that P = a3T
3 + a2T

2 + a1T + a0 ∈ K[T ]. Ap-
plying the algorithm given in the proof of the fondamental theorem on
symmetric polynomials, one can show (using Maple, for example) that

∆ = −4σ1σ3 + σ2
1σ

2
2 − 4σ3

2 + 18σ1σ2σ3 − 27σ2
3.

In particular, if P = T 3 + pT + q, we have

σ1(α1, α2, α3) = 0, σ2(α1, α2, α3) = p, σ3(α1, α2, α3) = −q,
and therefore

disc(P ) = −4p3 − 27q2,

which is the classical quantity to decide whether of not P has multiple
roots.
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11. Algebraic integers

Definition. A complex number α ∈ C is said to be an algebraic integer
if there exists a monic f ∈ Z[X] such that f(α) = 0.

Examples:

- Any n ∈ Z is an algebraic integer, because it is a root of the monic
polynomial X − n.

- The rational 1
2

is not an algebraic integer: it is a root of the polynomial
2X − 1, but it can be shown that it cannot be a root of any monic
polynomial in Z[X].

-
√

2 is a root of the monic polynomial X2−2, so is an algebraic integer.

- i is an algebraic integer since it is a root of the monic polynomial
X2 + 1.

- i+
√

2 is an algebraic integer: To see this, consider the polynomial

(X − i−
√

2)(X − i+
√

2)(X + i−
√

2)(X + i+
√

2) = X4 − 2X2 + 9.

- More easily, i
√

2 is an algebraic integer since it is a root of X2 + 2.

Theorem 11.1. The set of algebraic integers is a subring of C.

Proof. Clearly, 0 and 1 are algebraic integers.

Let α be a root of f(x) ∈ Z[X], a monic polynomial of degree m, and
similarly let β be a root of g(x) ∈ Z[X] a monic polynomial of degree
n. Over C, these polynomials split (by the fundamental theorem of
algebra):

f(X) =
m
∏

i=1

(X − αi) = Xm + am−1X
m−1 + · · · + a1X + a0,

g(x) =
m
∏

i=1

(X − βi) = Xn + bn−1X
n−1 + · · · + b1X + b0,

where α = α1 and β = β1 say.

The easy part of the proof is to note that −α is a root of

(−1)mf(−X) = Xm − am−1X
m−1 + am−2X

m−1 + · · · + (−1)ma0.

Now consider

F (X) =
m
∏

i=1

n
∏

j=1

(X − αi − βj).
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This has α + β as a root, and is monic. Thus it suffices to show that
F (X) ∈ Z[X]. Let

F1(X,Y1, . . . , Yn) =
m
∏

i=1

n
∏

j=1

(X − αi − Yj) ∈ C[X,Y1, . . . , Yn].

Then

F1(X,Y1, . . . , Yn) =
n
∏

j=1

m
∏

i=1

(X − Yj − αi) =
n
∏

i=1

f(X − Yj).

Therefore, F1 ∈ Z[X,Y1, . . . , Yn]. Moreover, F1 is symmetric in Y1, . . . , Yn.
Applying the fundamental theorem on symmetric polynomials in the
case when R = Z[x], it follows that

F1(X,Y1, . . . , Yn) = F2(X, σ1, . . . , σn) ∈ Z[x, σ1, . . . , σn]

for some polynomial F2, where σj is the jth elementary symmetric func-
tion in the Yj. Substituting Yj = βj gives σj(β1, · · · , βn) = (−1)jbn−j.
Hence

F (X) = F1(X, β1, . . . , βn) = F2(X,−bn−1, bn−2, . . . , (−1)nb0) ∈ Z[X].

Similarly, let

G(X) =
m
∏

i=1

n
∏

j=1

(X − αiβj),

and define

G1(X,Y1, . . . , Yn) =
m
∏

i=1

n
∏

j=1

(X − αiYj).

Then

G1(X,Y1, . . . , Yn) =
n
∏

j=1

Y m
j f(X/Yj),

where

Y m
j f(X/Yj) = Xm+am−1X

m−1Yj+am−2X
m−2Y 2

j +· · ·+a1XY
m−1
j +a0Y

m
j .

Then G1 ∈ Z[X,Y1, . . . , Yn] is symmetric, so

G1(X,Y1, . . . , Yn) = G2(X, σ1, . . . , σn) ∈ Z[X, σ1, . . . , σn],

and hence

G(X) = G1(X, β1, . . . , βn) = G2(X,−bn−1, bn−2, . . . , (−1)nb0) ∈ Z[X].

�

Corollary 11.2. Let K be a subfield of C. The set of elements of K
which are algebraic integers is a subring of K.

Definition. If K is a subfield of C, we set OK = {α ∈ K|α is an
algebraic integer }. This is a ring, called the ring of integers of K. An
element of OK is called an integer of K.
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Lemma 11.3. Let α ∈ C. Assume that α is algebraic over Q. Then

α is an algebraic integer ⇐⇒ µα,Q ∈ Z[X].

Proof. If µα,Q ∈ Z[X] then α is an algebraic integer by definition.
Conversely assume that α is an algebraic integer. Then f(α) = 0 for
some monic polynomial f ∈ Z[X]. We know that f = Q.µα,Q for some
Q ∈ Q[X], since f(α) = 0. Notice that c(f) ∼ 1 since f ∈ Z[X] is
monic. Since c(f) ∼ c(Q).c(µα,Q), we get that c(µα,Q) is a unit of Z,
and therefore µα,Q ∈ Z[X]. �

Example: The integers of Q are the integers ! In other words, OQ = Z.
Indeed if r ∈ Q, then µr,Q = X − r, which lies in Z[X] if and only if
r ∈ Z.

In general, OK is very difficult to describe. However, the case where
K = Q(

√
d) is completely known:

Proposition 11.4. Let d ∈ Z be a square-free integer, and let K =
Q(

√
d). Then we have:

1) OK = Z[
√
d] = {a+ b

√
d, a, b ∈ Z} if d 6≡ 1[4]

2) OK = Z
[1 +

√
d

2

]

= {a+ b.
1 +

√
d

2
, a, b ∈ Z} if d ≡ 1[4].

Proof. Since
√
d is a root of X2 − d,

√
d ∈ OK . Since OK is a ring, we

deduce that Z[
√
d] ⊂ OK . Similarly, if d ≡ 1[4], then 1+

√
d

2
is a root of

X2 −X − d−1
4

∈ Z[X], so 1+
√

d
2

∈ OK , and therefore Z[1+
√

d
2

] ⊂ OK .

Now assume that z = a + b
√
d ∈ K is an algebraic integer, and let’s

prove the missing inclusions.

If b = 0, z = a ∈ Q, and so we know that z ∈ Z and we are done.

Assume that b 6= 0.

Let f = (X−(a+b
√
d))(X+(a−b

√
d)) = X2−2aX+(a2−b2d) ∈ Q[X].

Since d is square-free,
√
d /∈ Q, so f has no roots in Q (b 6= 0!!) and is

therefore irreducible. Thus f = µz,Q. By assumption, we get 2a ∈ Z
and a2 − b2d ∈ Z.

Notice also we therefore have a−b
√
d is an integer of K, and substract-

ing with z gives that 2b
√
d ∈ OK . Now since

√
d is also an integer of

K, we get that 2bd is also an integer of K. Since 2bd ∈ Q, it implies
that 2bd ∈ OQ = Z.

To sum up, we have 2bd, 2a, a2 − b2d ∈ Z.

Case 1: aZ. In this case, b2d ∈ Z. Write b = u
v
, h.c.f(u, v) = 1. Then

v2|u2d, but since h.c.f(u2, v2) = 1, then v2|d, which is impossible since
d is square-free, unless v = ±1, and so b ∈ Z.
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Therefore z = a + b
√
d, a, b ∈ Z ∈ Z[

√
d]. Notice also that a + b

√
d =

(a − b) + 2b.1+
√

d
2

, so we also have z ∈ Z[1+
√

d
2

], which covers all the
cases.

Case 2: a ∈ 1
2
Z. In this case a = m

2
,m ∈ Z, and we can assume that

m is odd (otherwise we go back to Case 1).

Then a2−b2d = m2

4
−b2d ∈ Z, so m2−4b2d ∈ 4Z, so 4b2d = (2b)2d ∈ Z.

Reasoning as in Case 1 shows that 2b ∈ Z. Set b = n
2
, n ∈ Z.

We have m2 − 4bd = m2 − n2d ∈ Z. Since m is odd, we get m2 ≡ 1[4],
which implies that n2d ≡ 1[4], so n is odd. This implies in turn that
d ≡ 1[4].

Now we have z = a+ b
√
d = m+n

√
d

2
,m, n odd.

Therefore m− n is even and thus m−n
2

∈ Z.

Consequently z = m−n
2

+ n.1+
√

d
2

∈ Z[1+
√

d
2

].

�


