

Factorization in the Group Algebra of the Real Line

Walter Rudin

PNAS 1957;43;339-340 doi:10.1073/pnas.43.4.339

This information is current as of April 2007.

This article has been cited by other articles: www.pnas.org#otherarticles

E-mail Alerts

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article orclick here.

Rights & Permissions

To reproduce this article in part (figures, tables) or in entirety, see: www.pnas.org/misc/rightperm.shtml

Reprints

To order reprints, see: www.pnas.org/misc/reprints.shtml

Notes:

FACTORIZATION IN THE GROUP ALGEBRA OF THE REAL LINE

By Walter Rudin*

UNIVERSITY OF ROCHESTER

Communicated by Einar Hille, February 1, 1957

The algebra in question is the set L of all complex Lebesgue integrable functions on the real line, with pointwise addition, and with convolution as multiplication:

$$(g * h)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x - t) h(t) dt.$$
 (1)

The norm

$$||f|| = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| dx \tag{2}$$

makes L into a Banach algebra. The Fourier transform of a function $f \in L$ will be denoted by \hat{f} :

$$\hat{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ixy} dx.$$
 (3)

Then f = g * h if and only if $\hat{f}(y) = \hat{g}(y) \hat{h}(y)$ for all real y.

In this note it is proved that every member of L is the convolution of two others. Thus, although the algebra L has no unit element, unrestricted factorization is possible. There are no primes in L.

Theorem. Suppose that $f \in L$. There exist functions $g \in L$ and $h \in L$ such that

- (a) f = g * h;
- (b) both h and \hat{h} are positive and even;
- (c) g lies in the closed ideal generated by f.

Proof: For t > 0, let K_t be the function whose Fourier transform is

$$\hat{K}_{t}(y) = \begin{cases} 1 - \frac{|y|}{t} & \text{if } |y| < t \\ 0 & \text{if } |y| \geqslant t. \end{cases}$$

Put $\sigma_t = f * K_t$, and $\alpha(t) = ||f - \sigma_t||$. It is well known that $\alpha(t) \to 0$ as $t \to \infty$. Choose a sequence $\{t_n\}$ as follows: $t_1 = 0$; for $n \ge 2$, $t_n > 2t_{n-1}$ and $\alpha(t) < n^{-2}$ if $t \ge t_n$. Construct a function ϕ , concave and with continuous second derivative in $[0, \infty)$, such that $\phi(t_n) = n$. Consideration of the graph of ϕ shows that $t_n \phi'(t_n) < 2$ for $n \ge 2$. Hence

$$\int_{t_n}^{t_{n+1}} \alpha(t) t |\phi''(t)| dt < -n^{-2} \int_{t_n}^{t_{n+1}} t \phi''(t) dt
= n^{-2} \{ t_n \phi'(t_n) - t_{n+1} \phi'(t_{n+1}) + \phi(t_{n+1}) - \phi(t_n) \}
< 3n^{-2}.$$

Consequently,

$$\int_0^\infty \alpha(t) \ t \ |\phi''(t)| \ di < \infty. \tag{4}$$

Now define

$$g(x) = f(x) + \int_0^\infty \left\{ \sigma_t(x) - f(x) \right\} t \phi''(t) dt.$$
 (5)

By relation (4) and the Fubini theorem, the integral in equation (5) converges absolutely for almost all x, and $g \in L$. Also,

$$\hat{g}(y) = \hat{f}(y) + \hat{f}(y) \int_0^{\infty} \{ \hat{K}_t(y) - 1 \} t \phi''(t) dt.$$

The last integral is an even function of y. For y > 0, it is equal to

$$- \int_0^y t \, \phi''(t) \, dt - y \int_y^\infty \, \phi''(t) \, dt = \phi(y) - \phi(0) = \phi(y) - 1.$$

Thus, if we put $\phi(-t) = \phi(t)$, we have, for all real y,

$$\hat{g}(y) = \hat{f}(y) \phi(y). \tag{6}$$

Next, put $\lambda(t) = 1/\phi(t)$, and

$$h(x) = \int_0^\infty K_t(x) \ t \ \lambda''(t) \ dt. \tag{7}$$

Note that λ is convex in $(0, \infty)$, that $\lambda(t) \to 0$ as $t \to \infty$, and that consequently

$$\int_0^\infty t \, \lambda''(t) \, dt = \lambda(0) < \infty.$$

This implies that $h \in L$, and

$$\hat{h}(y) = \int_0^\infty \hat{K}_t(y) \ t \ \lambda''(t) \ dt.$$

For y > 0, a calculation similar to the one that led to equation (6) shows that $\hat{h}(y) = \lambda(y)$. By equation (6),

$$\hat{f}(y) = \hat{g}(y) \hat{h}(y) \tag{8}$$

for all real y, and part (a) of the theorem is proved.

It is evident from the construction that part (b) holds. To prove part (c), note that the function $\phi \hat{K}_t$ satisfies a Lipschitz condition of order 1 and vanishes outside a bounded interval. Hence $\phi \hat{K}_t = \hat{U}_t$ for some $U_t \in L$, and, by equation (6), $\hat{U}_t \hat{f} = \hat{K}_t \hat{g}$. It follows that $K_{t*} g$ belongs to the ideal generated by f, for each t > 0. As $t \to \infty$, $K_{t*} g$ tends to g, in the norm of L, so that part c holds. This completes the proof.

It is quite natural to ask now whether every non-negative $f \in L$ is the convolution of two nonnegative members of L. To see that this is not the case, observe that the integral in equation (1) is a lower semicontinuous function of x if g and h are nonnegative, so that f must coincide almost everywhere with some lower semicontinuous function if f = g * h. But this is impossible if f is the characteristic function of a compact totally disconnected set of positive measure, for instance.

It would be interesting to determine those functions which are convolutions of nonnegative functions.

^{*} Research Fellow of the Alfred P. Sloan Foundation.