Factorization in the Group Algebra of the Real Line

Walter Rudin
PNAS 1957;43;339-340
doi:10.1073/pnas.43.4.339
This information is current as of April 2007.

	This article has been cited by other articles: www.pnas.org\#otherarticles
E-mail Alerts	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article orclick here.
Rephts \& Permissions	To reproduce this article in part (figures, tables) or in entirety, see: www.pnas.org/misc/rightperm.shtml
	To order reprints, see: www.pnas.org/misc/reprints.shtml

Notes:

By Walter Rudin*

UNIVERSITY OF ROCHESTER

Communicated by Einar Hille, February 1, 1957

The algebra in question is the set L of all complex Lebesgue integrable functions on the real line, with pointwise addition, and with convolution as multiplication:

$$
\begin{equation*}
(g * h)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(x-t) h(t) d t \tag{1}
\end{equation*}
$$

The norm

$$
\begin{equation*}
\|f\|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|f(x)| d x \tag{2}
\end{equation*}
$$

makes L into a Banach algebra. The Fourier transform of a function $f \epsilon L$ will be denoted by \hat{f} :

$$
\begin{equation*}
\hat{f}(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i x y} d x \tag{3}
\end{equation*}
$$

Then $f=g_{*} h$ if and only if $\hat{f}(y)=\hat{g}(y) \hat{h}(y)$ for all real y.
In this note it is proved that every member of L is the convolution of two others. Thus, although the algebra L has no unit element, unrestricted factorization is possible. There are no primes in L.

Theorem. Suppose that $f \in L$. There exist functions $g \in L$ and $h \in L$ such that
(a) $f=g * h$;
(b) both h and \hat{h} are positive and even;
(c) g lies in the closed ideal generated by f.

Proof: For $t>0$, let K_{t} be the function whose Fourier transform is

$$
\hat{K}_{t}(y)= \begin{cases}1-\frac{|y|}{t} & \text { if }|y|<t \\ 0 & \text { if }|y| \geqslant t\end{cases}
$$

Put $\sigma_{t}=f_{*} K_{t}$, and $\alpha(t)=\left\|f-\sigma_{t}\right\|$. It is well known that $\alpha(t) \rightarrow 0$ as $t \rightarrow \infty$.
Choose a sequence $\left\{t_{n}\right\}$ as follows: $t_{1}=0$; for $n \geqslant 2, t_{n}>2 t_{n-1}$ and $\alpha(t)<n^{-2}$ if $t \geqslant t_{n}$. Construct a function ϕ, concave and with continuous second derivative in $[0, \infty)$, such that $\phi\left(t_{n}\right)=n$. Consideration of the graph of ϕ shows that $t_{n} \phi^{\prime}\left(t_{n}\right)$ <2 for $n \geqslant 2$. Hence

$$
\begin{aligned}
\int_{t_{n}}^{t_{n+1}} \alpha(t) t\left|\phi^{\prime \prime}(t)\right| d t & <-n^{-2} \int_{t_{n}}^{t_{n+1}} t \phi^{\prime \prime}(t) d t \\
& =n^{-2}\left\{t_{n} \phi^{\prime}\left(t_{n}\right)-t_{n+1} \phi^{\prime}\left(t_{n+1}\right)+\phi\left(t_{n+1}\right)-\phi\left(t_{n}\right)\right\} \\
& <3 n^{-2} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\int_{0}^{\infty} \alpha(t) t\left|\phi^{\prime \prime}(t)\right| d i<\infty . \tag{4}
\end{equation*}
$$

Now define

$$
\begin{equation*}
g(x)=f(x)+\int_{0}^{\infty}\left\{\sigma_{t}(x)-f(x)\right\} t \phi^{\prime \prime}(t) d t \tag{5}
\end{equation*}
$$

By relation (4) and the Fubini theorem, the integral in equation (5) converges absolutely for almost all x, and $g \epsilon L$. Also,

$$
\hat{\boldsymbol{g}}(y)=\hat{f}(y)+\hat{f}(y) \boldsymbol{\int}_{0}^{\infty}\left\{\hat{K}_{t}(y)-1\right\} t \phi^{\prime \prime}(t) d t
$$

The last integral is an even function of y. For $y>0$, it is equal to

$$
-\int_{0}^{y} t \phi^{\prime \prime}(t) d t-y \int_{v}^{\infty} \phi^{\prime \prime}(t) d t=\phi(y)-\phi(0)=\phi(y)-1
$$

Thus, if we put $\phi(-t)=\phi(t)$, we have, for all real y,

$$
\begin{equation*}
\hat{g}(y)=\hat{f}(y) \phi(y) \tag{6}
\end{equation*}
$$

Next, put $\lambda(t)=1 / \phi(t)$, and

$$
\begin{equation*}
h(x)=\int_{0}^{\infty} K_{t}(x) t \lambda^{\prime \prime}(t) d t \tag{7}
\end{equation*}
$$

Note that λ is convex in $(0, \infty)$, that $\lambda(t) \rightarrow 0$ as $t \rightarrow \infty$, and that consequently

$$
\int_{0}^{\infty} t \lambda^{\prime \prime}(t) d t=\lambda(0)<\infty
$$

This implies that $h \in L$, and

$$
\hat{h}(y)=\int_{0}^{\infty} \hat{K}_{t}(y) t \lambda^{\prime \prime}(t) d t
$$

For $y>0$, a calculation similar to the one that led to equation (6) shows that $\hat{h}(y)=$ $\lambda(y)$. By equation (6),

$$
\begin{equation*}
\hat{f}(y)=\hat{g}(y) \hat{h}(y) \tag{8}
\end{equation*}
$$

for all real y, and part (a) of the theorem is proved.
It is evident from the construction that part (b) holds. To prove part (c), note that the function $\phi \hat{K}_{t}$ satisfies a Lipschitz condition of order 1 and vanishes outside a bounded interval. Hence $\phi \hat{K}_{t}=\hat{U}_{t}$ for some $U_{t} \epsilon L$, and, by equation (6), $\hat{U}_{t} \hat{f}=$ $\hat{K}_{t} \hat{g}$. It follows that $K_{t} * g$ belongs to the ideal generated by f, for each $t>0$. As $t \rightarrow \infty, K_{t} * g$ tends to g, in the norm of L, so that part c holds. This completes the proof.

It is quite natural to ask now whether every non-negative $f \epsilon L$ is the convolution of two nonnegative members of L. To see that this is not the case, observe that the integral in equation (1) is a lower semicontinuous function of x if g and h are nonnegative, so that f must coincide almost everywhere with some lower semicontinuous function if $f=g * h$. But this is impossible if f is the characteristic function of a compact totally disconnected set of positive measure, for instance.

It would be interesting to determine those functions which are convolutions of nonnegative functions.

[^0]
[^0]: * Research Fellow of the Alfred P. Sloan Foundation.

