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As before, since F(0) <K (0), there is a point X& [0, 1] such that F(X)
=K(X), and the proof is completed.

It might be noted that if (p)+.S(a, b) CE,, Theorem 1 is valid for the multi-
plier 1/+/3 (which is less than 1). In general, however, 1 is the smallest multi-
plier of pf for which Theorem 1 is valid. This can be seen by considering the
Minkowski space M. The elements of this space are ordered pairs of real num-
bers with distance of x = (x1, 2) and y = (y1, y») taken as

wy = [ @1 — y1| + [ 22— 3],

Let S(a, b) be contained in the interval joining (—1, 0) and (1, 0) and let
p=1(0, 1). It is easily seen that if p, x, y form an equilateral triple with %, ¥
&S(a, b) then x and v must be the points (—1, 0) and (1, 0). Hence S(a, 0) is
the interval joining these two points; the foot f of p on S(g, b) is the origin, and

min [af, bf]=pf.
A slightly more complicated example can be given, also in the Mg’ which
shows that 2 is the smallest multiplier of pf for which Theorem 2 is valid.

The research of B. W. Huff was supported in part by the U. S. Army Research Office, Grant
No. DA-ARO(D)-31-124-G383.
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LOCATION COF THE ZEROS OF POLYNOMIALS

Q. G. MouaMMAD, Jammu and Kashmir University, India
The following theorem is due to Montel and Marty [1, p. 107].
THEOREM A. All the zeros of the polynomial
p() =a+ az+ -+ apz F 2

lie n [zl <max (L, L) where L is the length of the polygonal line joining in suc-
cession the points 0, ag, a1, * * + , Gn-1, 1; 1.6

L=|al+ |ai—a|+ -+ |ts— tas| + |1 = au].
We prove

TucoreEM 1. Al the zeros of the polynomial of Theorem A lie in [z[ =R
=max(L,, L") where

n—1 1/p
Lo=wi( S lal) et
=0

The bound is sharp.



|
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Proof. We have
| ans

@) @] = [Z|”<1“ é |:| >g |Z|n{1—n1/q<§ L{l:]_f;k))l/p}.

If L,21, max(L,, L;") =L,. Let | 2| =1. Then 1/ #<1/|2]? (i=1,2, - - -, n).
Hence (1) implies that if |z| >L, then

()| = |Z|"{1—1flz—/iz(j;:|ai|P)1/1’} - |z|"<1-—|L—:—|>>O.

Again if L, <1, max(L,, L") =Ly" Let |z| £1. Then 1/|z[ 7 <1/| 5] (i =1,
2, - -+, n). Hence, by (1), if |z >LY" then

nlla n 1/p
|z\n{1——|——(2|an_f|p) ;
Zl" =1

nllq n—1 1/p
o fr = T (S hal) )
Zl" 0

= |z|n(1—-]€—’l’;>>0.

Hence p(z) does not vanish for sz >max(L,, LY and the theorem follows.
The limit in Theorem 1 is attained by

Y

| p) |

I

1
j;(z)=z”——n-(z"‘1—l—z"‘2—|—---—I—z—l—l)

since

n—1 1 1/p n 1/p nlll’.nllq
» = nl/Q( Z —-—-) = n1/¢1<——-> —_—— = 1

0o nP n? n

and 1 is a zero of p(2).
Letting g— 0, it follows that all the zeros of p(2) lie in

n—1

(2) | 2| < max (L4, Li/n) where Ly = 3 | asl.
=0

Applying this result to (1 —2)p(z) we obtain the theorem of Montel and Marty
mentioned above.

THEOREM 2. If 0<a,1=kai, k>0, then all the zeros of P(z) =a¢+az+ - - -
+a,z" lie in lzl < max(M, M'") where

M= (do"i‘al‘l‘ "'+an—1)

an

(k—1) + &
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Proof. Consider
F(i) = (k—2)P() = (k—2)(a+ az+ -+ + a2
= kao + (ka1 — ao)z + (kay — an)2® + - -+ + (kan — Gu_1)2" — anz™L,
Applying (2) to the polynomial F(z)/a, we find that
Z ikdi—dz’—1| k@+a+ - +a)—(ot+a+t+--- + an)

=0

Ll = =
an 223

(k_l)(do'l‘dl‘l‘ c '+dn—1)+

an

k=M

and the theorem follows. Putting £=1 in Theorem 2 we get the following result
due to Kakeya [1, p. 106].

TuEOREM B. If 0<a¢<a1= - - - =a., then all the zeros of the polynomial
aotaztaztt - - - taazn liein |3 S1.

This follows from the fact that M/ =1, hence max(M, MV»)=1.
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A NOTE CONCERNING FERMAT’S CONJECTURE
W. E. CHRISTILLES, St. Mary’s University, San Antonio, Texas

This paper introduces some elementary results related to the famous un-
solved conjecture of Fermat, that there exists no nontrivial solution in integers
of the equation

1 g+ yr+zm =0
for # an odd integer >2. It is sufficient to consider the equation
(2) xp—l—yp—l—zl’:o’

for p an odd prime. Theorem 2 (below) is a new proof of Stone’s Theorem 1 [1].
In addition an extension of Stone's Theorem will be stated and proven.

Assume that equation (2) has a solution x=a, y=0, z=c. The following
restrictions result in no loss of generality.

3.1 abc # 0

(3.2) | abc| =1

(3.3) | ¢| and | 5| are not both unity.

(3.4) (¢,8) =1,(a,¢c) =1, and (d,¢) = 1.

(3.5) c<0<a<b<|ecl.



	Article Contents
	p. 290
	p. 291
	p. 292

	Issue Table of Contents
	American Mathematical Monthly, Vol. 74, No. 3 (Mar., 1967), pp. 229-352
	Front Matter
	Recent Advances in Difference Sets [pp. 229-235]
	On Convoluted Numbers and Sums [pp. 235-246]
	The Group of Automorphisms of the Game of 3-Dimensional Ticktacktoe [pp. 247-254]
	Infinitely Divisible Distributions on Cyclic Groups [pp. 255-261]
	Between T and T [pp. 261-266]
	Denseness and Completeness in Certain Function Spaces [pp. 266-271]
	The Means of Order t, and the Laws of Thermodynamics [pp. 271-274]
	Mathematical Notes
	Linear Transformations with Invariant Cones [pp. 274-276]
	A Note on Matrix Commutators [pp. 276-278]
	Radial Functions of Convex and Star-Shaped Bodies [pp. 278-280]
	On Countably Compact Nonlocally Compact Spaces [pp. 280-283]
	Separation Axioms in Quasi-Uniform Spaces [pp. 283-284]
	The Convolution Ring of Sequences [pp. 284-286]
	Complements in Finite Groups [pp. 286-288]
	A Note on Equilateral Metric Triples [pp. 288-290]
	Location of the Zeros of Polynomials [pp. 290-292]
	A Note Concerning Fermat's Conjecture [pp. 292-294]
	An Extension of a Theorem Concerning Equilateral Triples [pp. 295-297]
	A Lower Bound for the Number of Vertices of a Graph [p. 297]
	On the Rational Solutions of m = n with m ≠ n [pp. 298-300]
	The 2Ω Property of Torsion-Free Abelian Groups [pp. 301-302]

	Classroom Notes
	On Cowen's Note "An Elementary Fixed Point Theorem" [pp. 302-303]
	Uniqueness of the Polar Decomposition [pp. 303-304]
	On the Arithmetic Mean-Geometric Mean Inequality [pp. 305-306]
	The Structure of Fundamental Matrices in the Neighborhood of a Singularity of the First Kind [pp. 306-308]
	Banach Limits [pp. 308-311]
	A Further Extension of Olivier's Theorem [pp. 311-313]
	Motivation of Truth Tables From Tautologies [pp. 313-314]
	On the Continuity of Monotonic Functions [pp. 314-315]
	Another Proof of Ascoli's Theorem [pp. 315-316]

	Mathematical Education Notes
	Summer Institutes for College Teachers [pp. 316-317]

	Problems and Solutions
	Elementary Problems: E1965-E1974 [pp. 317-319]
	Solutions of Elementary Problems
	E1825 [pp. 319-320]
	E1826 [pp. 320-321]
	E1827 [pp. 321-322]
	E1828 [pp. 322-323]
	E1829 [pp. 323-324]
	E1830 [pp. 324-325]
	E1831 [p. 325]
	E1832 [pp. 325-326]
	E1833 [pp. 326-327]
	E1834 [pp. 327-328]

	Advanced Problems: 5470-5479 [pp. 328-329]
	Solutions of Advanced Problems
	5325 [pp. 329-330]
	5367 [p. 330]
	5368 [pp. 330-331]
	5369 [p. 331]
	5371 [pp. 331-332]
	5372 [p. 332]
	5373 [pp. 332-333]
	5374 [pp. 333-334]
	5375 [pp. 334-335]
	5376 [pp. 335-337]
	5377 [p. 337]


	Reviews
	Telegraphic Reviews [pp. 338-342]
	Review: untitled [p. 342]
	Review: untitled [p. 342]
	Review: untitled [p. 343]
	Review: untitled [p. 343]
	Review: untitled [p. 344]
	Review: untitled [pp. 344-345]
	Review: untitled [p. 345]
	Review: untitled [p. 345]
	Review: untitled [p. 345]
	Review: untitled [p. 346]
	Review: untitled [p. 346]
	Review: untitled [pp. 346-347]
	Review: untitled [p. 347]
	Review: untitled [p. 347]
	Review: untitled [p. 348]

	News and Notices [pp. 348-349]
	Mathematical Association of America: Official Reports and Communications
	April Meeting of the Missouri Section [p. 350]
	November Meeting of the Indiana Section [pp. 350-351]
	November Meeting of the Northeastern Section [p. 351]
	November Meeting of the Philadelphia Section [p. 351]
	Calendar of Future Meetings [p. 352]
	Future Meetings of Other Organizations [p. 352]

	Back Matter



