On the Zeros of Polynomials Author(s): Q. G. Mohammad Source: The American Mathematical Monthly, Vol. 72, No. 6 (Jun. - Jul., 1965), pp. 631-633 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2313853 Accessed: 20/09/2008 15:46 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at 0 if $|z| < |a_0|/M$ (≤ 1 since $|a_0| \le M$ by hyp.); hence p(z) does not vanish for $|z| < |a_0|/M$. Consequently all the zeros of p(z) lie in $|z| \ge |a_0|/M$. As $P(z) = z^n p(1/z)$, we conclude that all the zeros of P(z) lie in $|z| \le M/|a_0|$. This proves the theorem. REMARK 1. If $|a_0| \ge M$, it follows easily from (2) that all the zeros of P(z) lie in $|z| \le 1$. REMARK 2. The limit in Theorem 1 is attained by $P(z) = -nz^n + z^{n-1} + \cdots + z + 1$. REMARK 3. The bound obtained in Theorem 1 is in general better than the traditional $(|a_1| + |a_2| + \cdots + |a_n|)/|a_0|$. COROLLARY 1. If $a_k \ge 0$, $k = 1, 2, \dots, n$ and $|a_0| \le a_1 + a_2 + \dots + a_n$, then all the zeros of P(Z) lie in $|z| \le (a_1 + a_2 + \dots + a_n)/|a_0|$. In particular all the zeros of $R(z) = \pm S_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n$ lie in $|z| \le 1$, where $S_0 = a_1 + a_2 + \cdots + a_n$. A well-known theorem of Enestrom and Kakeya ([1], p. 106) states that if $a_0 \ge a_1 \ge a_2 \ge \cdots \ge a_{n-1} \ge a_n > 0$, then all the zeros of P(z) lie in $|z| \le 1$. We show that it can be deduced easily from Corollary 1. Let $$F(z) = (1-z)P(z) = (1-z)(a_0z^n + a_1z^{n-1} + \cdots + a_{n-1}z + a_n)$$ $$= -a_0z^{n+1} + (a_0 - a_1)z^n + (a_1 - a_2)z^{n-2} + \cdots + (a_{n-1} - a_n)z + a_n$$ $$= -a_0z^{n+1} + Q(z).$$ The hypothesis of the Enestrom-Kakeya theorem implies that Q(z) is a polynomial with nonnegative coefficients and the sum of the coefficients is clearly a_0 . Hence by Corollary 1 all the zeros of F(z) lie in $|z| \le 1$. As all the zeros of P(z) are also the zeros of F(z) we have proved the Enestrom-Kakeya Theorem. THEOREM 2. Let r be the modulus of the zeros of largest modulus of P(z) and $M' = \max_{|z|=r} |a_0 z^{n-1} + a_1 z^{n-2} + \cdots + a_{n-1}|$. Then all the zeros of P(z) lie in the ring-shaped region $r|a_n|/M' \le |z| \le r$ if $|a_n| \le M'$. *Proof.* $P(z) = a_n + a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z$ implies, by Schwarz's lemma, that if $|z| \le r$ then $$|P(z)| \ge |a_n| - |a_0z^n + a_1z^{n-1} + \cdots + a_{n-1}z| \ge |a_n| - \frac{M'|z|}{r}$$ Hence |P(z)| > 0 if $|z| < r|a_n|/M'$ ($\leq r$ since $|a_n| \leq M'$ by hypothesis). Hence all the zeros of P(z) lie in the region $r|a_n|/M' \leq |z| \leq r$. COROLLARY 2. If $a_k \ge 0$, $k=1, 2, 3, \cdots, n-1, a_0 > 0$, and if $|a_n| \le a_0 r^n + a_1 r^{n-1} + \cdots + a_{n-1} r$, then all the zeros of P(z) lie in $$\frac{r \mid a_n \mid}{a_0 r^n + a_1 r^{n-1} + \cdots + a_{n-1} r} \leq \mid z \mid \leq r.$$ With the help of Corollary 2 we can restate the Enestrom-Kakeya Theorem in the following form: THEOREM 3. If $a_0 \ge a_1 \ge \cdots \ge a_{n-1} \ge a_n > 0$, then all the zeros of P(z) lie in the ring-shaped region $a_n/(a_0+a_1+\cdots+a_{n-1}) \le |z| \le 1$. The lower limit is attained by P(z) = z + 1. The following theorem can be easily deduced from the Enestrom-Kakeya Theorem ([1], p. 106). Theorem a. All the zeros of P(z) having real positive coefficients lie in $|z| \leq \rho$, where (3) $$\rho = \max \left(\frac{a_1}{a_0}, \frac{a_2}{a_1}, \dots, \frac{a_{n-1}}{a_{n-2}}, \frac{a_n}{a_{n-1}} \right).$$ Clearly $\rho^n \ge a_n/a_0$ or $a_0 \rho^n \ge a_n$. Hence, $$M' = \max_{|z|=\rho} |a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z| = a_0 \rho^n + a_1 \rho^{n-1} + \cdots + a_{n-1} \rho > a_n.$$ Hence, applying Corollary 2 to P(z), we can restate this theorem in the following form: THEOREM 4. If ρ is given by (3) then all the zeros of P(z) having real positive coefficients lie in the ring-shaped region $$\frac{\rho a_n}{a_0 \rho^n + a_1 \rho^{n-1} + \cdots + a_{n-1} \rho} \leq z \leq \rho.$$ THEOREM 5. If $a_0 \ge a_1 \ge \cdots \ge a_{n-1} \ge a_n > 0$, then the number of zeros of P(z) in $|z| \le \frac{1}{2}$ does not exceed $$1 + \frac{1}{\log 2} \log \frac{a_0}{a_n} \cdot$$ Proof. Consider $$F(z) = (1-z)(a_0z^n + a_1z^{n-1} + \cdots + a_{n-1}z + a_n)$$ = $-a_0z^{n+1} + (a_0 - a_1)z^n + (a_1 - a_2)z^{n-1} + \cdots + (a_{n-1} - a_n)z + a_n$. For $|z| \leq 1$, $$\left|\frac{F(z)}{F(0)}\right| \leq \frac{a_0 + (a_0 - a_1) + \dots + (a_{n-1} - a_n) + a_n}{a_n} = \frac{2a_0}{a_n}.$$ If f(z) is regular, $f(0) \neq 0$, and $|f(z)| \leq M$ in $|z| \leq 1$, then ([2], p. 171) the number of zeros of f(z) in $|z| \leq 1/2$ does not exceed $\{\log M/|f(0)|\}/\log 2$. Therefore, if n(1/2) denotes the number of zeros of F(z) in $|z| \leq 1/2$ then from above $$n(\frac{1}{2}) \le \log \frac{2a_0}{a_n} / \log 2 = 1 + \frac{1}{\log 2} \log \frac{a_0}{a_n}$$ As the number of zeros of P(z) in $z \le 1/2$ is also equal to $n(\frac{1}{2})$ the theorem is proved. ## References M. Marden, The geometry of zeros, Amer. Math. Soc., Math. Surveys, No. 3, New York. E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford University Press, London, 1939.