Nilpotent et diagonalisable, je t'aime, moi non plus...

Dominique Hoareau, domeh@wanadoo.fr

On se place dans l'algèbre $\mathcal{M}_p(\mathbb{C})$ des matrices de taille p à coefficients complexes, munie de sa structure topologique naturelle d'espace vectoriel de dimension finie. On raconte la saga de deux familles, \mathcal{N} des matrices nilpotentes et \mathcal{D} des matrices diagonalisables.

- 1) Il y a des ressemblances entre ces deux parties \mathcal{N} et \mathcal{D} de $\mathcal{M}_p(\mathbb{C})$, notamment des similitudes de structures. Ce sont 2 cônes (non réduit à 0, donc non bornés), étoilés en 0 (donc connexe par arcs), non convexes sans autre forme particulière de stabilité et si on ajoute un peu de commutation, on compense quelques lacunes de structure. (cf Partie 6)
- 2) Qui se ressemble s'assemble, voilà l'union avec la décomposition de Dunford : Toute matrice M de $\mathcal{M}_p(\mathbb{C})$ s'écrit M = D + N, D diagonalisable, N nilpotente avec un tas de bonnes propriétés. (cf Partie 4)
- 3) Il y a évidemment quelques orages entre ces amants. Illustration d'un premier affrontement : toute exponentielle de matrice est un polynôme en la matrice. Mais existe-t-il un polynôme qui coincide avec l'exponentielle matricielle? \mathcal{N} dit oui, \mathcal{D} dit non. Chacun tire la couverture vers soi et c'est \mathcal{D} qui a le dernier mot. (cf Partie 3)
- 4) Ce premier exemple préfigure une opposition de poids. Topologiquement, l'encombrement de \mathcal{D} est largement plus conséquent que celui de \mathcal{N} dans $\mathcal{M}_p(\mathbb{C})$. (cf Partie 2)
- 5) Malgré une opposition criarde dans les multiplicités des valeurs propres (cf Partie 5), on rapproche les nilpotents dont le noyau est une droite et les diagonalisables à spectre simple (cf Partie 9) en étudiant les rapports de \mathcal{N} et \mathcal{D} avec un troisième cône, celui des matrices cycliques.
- 6) On cherche par ailleurs l'intersection des 2 cônes. Elle est réduite à la matrice nulle, ce qui laisse dire que être diagonalisable et être nilpotente sont pour les matrices des propriétés antinomiques. (cf Partie 7)
- 7) L'intersection des 2 cônes nilpotent et diagonalisable apparaît clairement avec les caractérisations topologiques. (cf Partie 8)

1 Le décor

Soit $p \in \mathbb{N}^*$. On désigne par M un élément générique de $\mathcal{M}_p(\mathbb{C})$ et par f l'endomorphisme de \mathbb{C}^p de matrice M dans la base canonique de \mathbb{C}^p . On note \mathcal{N} et \mathcal{D} les cônes des matrices nilpotentes et diagonalisables de $\mathcal{M}_p(\mathbb{C})$. On choisit la lettre N (resp. D) pour désigner une matrice nilpotente (resp. diagonalisable) et les minuscules idoines pour les endomorphismes canoniquement associés.

On rappelle que si n est un endomorphisme nilpotent de \mathbb{C}^p et si F est un sous-espace stable par n, l'endomorphisme induit par n sur F est lui même nilpotent. On a un résultat analogue si on remplace l'hypothèse "n nilpotent" par "d diagonalisable". Si on appelle $E_1, ..., E_k$ les sous-espaces propres distinctes associés aux valeurs propres distinctes $\lambda_1, ..., \lambda_k$ de d, on retiendra que $F = \bigoplus_{1 \leqslant i \leqslant k} F \cap E_i$.

Exercice 1

Montrer que si $N_1, ..., N_p$ sont p matrices nilpotentes de $\mathcal{M}_p(\mathbb{C})$ commutant deux à deux, alors $N_1...N_p = 0$.

On raisonne par récurrence sur p. En dimension 1, il n'y a rien à dire. On suppose la propriété vraie jusqu'à $p-1 \ge 1$. On note $n_1, ..., n_p$ les endomorphismes de \mathbb{C}^p canoniquement associés aux matrices N_i . Si $n_p = 0$, le résultat est évident. Sinon, on envisage son image $F = Im(n_p)$, qui est stable par chaque n_i , et on note \tilde{n}_i

l'endomorphisme induit par n_i sur F. Chaque $\tilde{n_i}$ est nilpotent et, puisque F est de dimension inférieure à p-1, $\tilde{n_1}...\tilde{n_{p-1}}=O$. Pour x quelconque dans \mathbb{C}^p , on écrit $n_1...n_{p-1}n_p(x)=n_1...n_{p-1}(y)$ avec $y=n_p(x)\in F$. Ainsi, $n_1...n_{p-1}n_p(x)=\tilde{n_1}...\tilde{n_{p-1}}(y)=O$ d'où le résultat.

En particulier, on retiendra

Lemme 1

L'indice de nilpotence d'une matrice N nilpotente de $\mathcal{M}_p(\mathbb{C})$ est inférieure ou égal à p. Autrement dit, N est nilpotente si, et seulement si, $N^p = 0$.

Remarque: Le cône nilpotent est fermé (non compact puisque non borné) dans $\mathcal{M}_p(\mathbb{C})$ puisque c'est l'image réciproque du fermé $\{0\}$ par l'application continue $M \mapsto M^p$.

Si M est un élément de $\mathcal{M}_p(\mathbb{C})$, son polynôme caractéristique $\Pi_M(X) = \det(M - XI_p)$) s'écrit :

$$\Pi_M(X) = (-1)^p [X^p - a_{p-1}X^{p-1} - \dots - a_0].$$

Réciproquement, tout polynôme Π de $\mathbb{C}[X]$ du type $\Pi(X) = (-1)^p[X^p - a_{p-1}X^{p-1} - \dots - a_0]$ est le polynôme caractéristique de la matrice

$$C_{\Pi} = \left(egin{array}{cccc} 0 & & & a_0 \\ 1 & \ddots & & a_1 \\ & \ddots & 0 & dots \\ & & 1 & a_{p-1} \end{array}
ight)$$

dite matrice compagnon de Π . Pour s'en convaincre, on peut remplacer la ligne L_1 de $\det(C_{\Pi} - XI_p)$ par

$$L_1 \leftarrow L_1 + XL_2 + \dots + X^{p-1}L_p$$

puis développer le nouveau déterminant selon sa première ligne. Une matrice M de $\mathcal{M}_p(\mathbb{C})$ est dite cyclique lorsque M est semblable à une matrice compagnon. On vérifie facilement que cela équivaut encore à dire qu'il existe un vecteur e de \mathbb{C}^p tel que $(e, f(e), ..., f^{p-1}(e))$ est une base de \mathbb{C}^p , ce qui justifie la terminologie. Dans ce cas, on dit que e est un générateur f cyclique de \mathbb{C}^p . On remarque enfin que la famille \mathcal{C} des matrices cycliques de $\mathcal{M}_p(\mathbb{C})$ est un cône épointé (ayant 0 dans son adhérence). Soit $M \in \mathcal{M}_p(\mathbb{C})$ cyclique et $\lambda \in \mathbb{C}^*$. La matrice λ M est semblable à la matrice λ C_{Π_M} . Si f_{λ} est l'endomorphisme de \mathbb{C}^p représenté dans la base canonique $(e_1, ..., e_n)$ par λ C_{Π_M} , la matrice de f_{λ} dans la base $(\frac{1}{\lambda^{p-1}}e_1, \frac{1}{\lambda^{p-2}}e_2, ..., \frac{1}{\lambda}e_p)$ est encore une matrice compagnon, ce qui prouve que λ M est cyclique.

2 Une opposition de poids dans $\mathcal{M}_p(\mathbb{C})$

On veut comparer l'encombrement de \mathcal{N} et \mathcal{D} dans $\mathcal{M}_p(\mathbb{C})$.

2.1 Aspect vectoriel

On commence par engraisser les cônes \mathcal{D} et \mathcal{N} en envisageant les sous espaces qu' ils engendrent. On peut s'attendre à de grosses parties (convexes) de $\mathcal{M}_p(\mathbb{C})$.

Proposition 1

- Le sous-espace de $\mathcal{M}_p(\mathbb{C})$ engendré par les matrices nilpotentes est l'hyperplan noyau de la forme linéaire trace.
- Le sous-espace de $\mathcal{M}_p(\mathbb{C})$ engendré par les matrices diagonalisables est $\mathcal{M}_p(\mathbb{C})$.

Pour 1 : On commence par le

Lemme 2

Si M est une matrice $p \times p$ de trace nulle, M est semblable à une matrice à diagonale nulle.

On raisonne par récurrence sur p. Pour p=1, il n'y a rien à faire. On suppose la propriété vraie jusqu'au rang p-1. Soit M une matrice $p \times p$ de trace nulle. Puisque la caractéristique de Cest nulle, M n'est pas scalaire. Soit alors, en vertu du lemme de Schur, une colonne C dans \mathbb{C}^p telle que (C, MC) soit libre. On complète (C, MC) en une base de \mathbb{C}^p et M est semblable à

$$M' = \begin{pmatrix} 0 & * & \\ 1 & \lceil & & \rceil \\ \vdots & N & \\ 0 & \lfloor & & \rfloor \end{pmatrix}, \quad \text{avec } Tr(M) = Tr(M') = Tr(N) = 0.$$

La récurrence s'enclenche avec $N \in \mathcal{M}_{p-1}(\mathbb{C})$.

Soit à présent M une matrice de trace nulle. Elle est semblable à une matrice M' à diagonale nulle. Or M' est combinaison linéaire des matrices élémentaires $E_{i,j}$, $(i \neq j)$ qui sont nilpotentes. D'où facilement le résultat

<u>Pour 2</u>: On réalise la preuve en dimension 2. Une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ étant donnée, on choisit $\lambda \in \mathbb{C}$, puis $\mu \in \mathbb{C}$ tel que $\mu \neq \lambda$ et $d - \mu \neq a - \lambda$ et on écrit :

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \underbrace{\left(\begin{array}{cc} \lambda & b \\ 0 & \mu \end{array}\right)}_{\text{à spectre simple}} + \underbrace{\left(\begin{array}{cc} a - \lambda & 0 \\ c & d - \mu \end{array}\right)}_{\text{à spectre simple}}.$$

Voici un corollaire qui assure la transition avec le paragraphe suivant :

Corollaire 1

Le cône \mathcal{N} est d'intérieur vide dans $\mathcal{M}_p(\mathbb{C})$.

Si \mathcal{N} a un intérieur non vide, alors le sous-espace engendré par \mathcal{N} est un sous-espace d'intérieur non vide donc coincide avec $\mathcal{M}_p(\mathbb{C})$. Ce qui n'est pas.

2.2 Aspect topologique

"Sortir" une matrice compagnon de $\mathcal{M}_p(\mathbb{C})$, c'est choisir ses p valeurs propres, ou tirer avec remise p scalaires de \mathbb{C} . On sent bien qu'une matrice compagnon est "statistiquement" à valeurs propres distinctes et non nulles. Lorsqu'on sort maintenant une matrice M de $\mathcal{M}_p(\mathbb{C})$, on peut considérer la matrice compagnon du polynôme caractéristique Π_M de M donc M est aussi statistiquement à spectre simple (avec $0 \notin Sp(M)$) donc ¹ diagonalisable (inversible). On ne sera ainsi pas surpris de découvrir que, si M n'est pas diagonalisable (respectivement est nilpotente), elle est en tout cas étouffée par des matrices diagonalisables (respectivement inversibles).

Proposition 2

- 1. Le cône des matrices complexes diagonalisables a pour intérieur l'ensemble \mathcal{D}_{\circ} des matrices diagonalisables à spectre simple qui est un (ouvert) dense dans $\mathcal{M}_{p}(\mathbb{C})$.
- 2. Le groupe $\mathcal{G}l_p(\mathbb{C})$ des matrices inversibles de $\mathcal{M}_p(\mathbb{C})$ est un ouvert dense de $\mathcal{M}_p(\mathbb{C})$ donc le cône des matrices complexes nilpotentes est contenu dans un fermé de $\mathcal{M}_p(\mathbb{C})$ d'intérieur vide.

Les p sous-espaces propres de M de dimension au moins 1 et de somme directe sont nécessairement de dimension égale à 1.

Remarque : Le sous-espace engendré par \mathcal{D} est, comme $\mathcal{M}_p(\mathbb{C})$, de dimension finie donc est fermé. Par conséquent, il contient l'adhérence de \mathcal{D} et on retrouve qu'il coincide avec $\mathcal{M}_p(\mathbb{C})$.

$\underline{Pour\ 1}$:

Densité.

Soit $M \in \mathcal{M}_p(\mathbb{C})$, $\varepsilon > 0$. On appelle $\lambda_1, ..., \lambda_s$ les valeurs propres distinctes de M et $n_1, ..., n_s$ leurs multipli-

cités. Par trigonalisation de
$$M$$
, il existe $P \in \mathcal{G}l_p(\mathbb{C})$ et $T \in \mathcal{M}_p(\mathbb{C})$ de la forme $T = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_s \end{pmatrix}$

tel que
$$M = PTP^{-1} = P\begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_s \end{pmatrix} P^{-1}$$
. On commence par séparer les λ_i en choisissant

 $\rho \in]0; \varepsilon[$ tel que les disques fermés centrés en λ_i et de rayon ρ soient disjoints deux à deux. Pour $1 \le i \le s$, on choisit, sur le cercle de centre λ_i et de rayon ρ , n_i complexes distinctes $z_i^1, ..., z_i^{n_i}$. Si || || est la norme sur $\mathcal{M}_p(\mathbb{C})$ définie par $||M|| = \max_{1 \le i,j \le p} |m_{i,j}|$ et $\nu = ||P^{-1} \bullet P||$, $\nu(M-D) \le \rho < \varepsilon$ où D est la matrice

diagonalisable à spectre simple
$$D = P \begin{pmatrix} z_1^1 & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & z_s^{n_s} \end{pmatrix} P^{-1}.$$

Intérieur de \mathcal{D} .

On vient de voir que l'adhérence de \mathcal{D} est $\overline{\mathcal{D}} = \mathcal{M}_p(\mathbb{C})$. Si on admet provisoirement que la frontière $Fr(\mathcal{D})$ de \mathcal{D} est l'ensemble des matrices complexes ayant au moins une valeur propre multiple, on conclut que l'intérieur de \mathcal{D} est $\overset{\circ}{\mathcal{D}} = \overline{\mathcal{D}} \setminus Fr(\mathcal{D}) = \mathcal{D}_{\circ}$. Reste à déterminer la frontière de \mathcal{D} . Soit $M \in \mathcal{M}_p(\mathbb{C})$ ayant au moins une valeur propre multiple λ . Puisque \mathcal{D}_{\circ} est dense dans $\mathcal{M}_p(\mathbb{C})$, M est dans l'adhérence de \mathcal{D} . Par ailleurs, par trigonalisation de M, il existe $P \in \mathcal{G}l_p(\mathbb{C})$ tel que

$$M = P \begin{pmatrix} \lambda & \mu & \dots & * \\ 0 & \lambda & \dots & * \\ 0 & 0 & * & * \\ \vdots & & & \vdots \\ 0 & 0 & \dots & * \end{pmatrix} P^{-1}.$$

On envisage alors la suite de
$$\mathcal{M}_p(\mathbb{C})$$
 de terme général $M_k = P \begin{pmatrix} \lambda & \mu + \frac{1}{k} & \dots & * \\ 0 & \lambda & \dots & * \\ 0 & 0 & * & * \\ \vdots & & & \vdots \\ 0 & 0 & \dots & * \end{pmatrix} P^{-1}$. Pour $k > \frac{1}{|\mu|}$ si

 $\mu \neq 0, \ k \geqslant 1$ sinon, M_k n'est pas diagonalisable sous peine de voir le bloc $\begin{pmatrix} \lambda & \mu + \frac{1}{k} \\ 0 & \lambda \end{pmatrix}$ diagonalisable et la suite (M_k) converge vers M:M est aussi dans l'adhérence du complémentaire de \mathcal{D} . Ainsi, la frontière de \mathcal{D} contient les matrices à valeurs propres non distinctes. Soit à présent M dans la frontière de \mathcal{D} . Puisque M est adhérent au complémentaire de \mathcal{D} , il existe une suite (M_k) de matrices non diagonalisables convergeant vers M. Les matrices M_k ont toutes au moins une valeur propre multiple λ_k et ces valeurs propres sont

bornées. En effet, on choisit sur $\mathcal{M}_p(\mathbb{C})$ une norme || || subordonnée à une norme de \mathbb{C}^p , un entier k_0 tel

que $k \geqslant k_0 \Rightarrow ||M_k|| \leqslant ||M|| + 1$. Puisque chaque valeur propre de M_k est inférieur en module à $||M_k||$, la suite (λ_k) est bornée par $\max\left(\max_{1\leqslant k< k_0}||M_k||;||M||+1\right)$. Quitte à extraire une sous suite de (λ_k) , on peut supposer que (λ_k) qui vérifie $\Pi_{M_k}(\lambda_k) = \Pi'_{M_k}(\lambda_k) = 0$ converge dans \mathbb{C} vers un certain λ . A la limite on a $\Pi_M(\lambda) = \Pi'_M(\lambda) = 0$ ce qui prouve que M a au moins une valeur propre multiple et, en donnant la deuxième inclusion, achève la preuve.

<u>Pour 2</u>: Pour $M \in \mathcal{M}_p(\mathbb{C})$, det M est un polynôme en les coefficients de M donc l'application déterminant est continue sur $\mathcal{M}_p(\mathbb{C})$. Puisque \mathbb{C}^* est un ouvert de \mathbb{C} , $\mathcal{G}l_p(\mathbb{C}) = \det^{-1}(\mathbb{C}^*)$ est aussi ouvert. Soit à présent M dans $\mathcal{M}_p(\mathbb{C})$ et $\varepsilon > 0$. Puisque M n'a qu'un nombre fini de valeurs propres, on choisit $\rho \in]0; \varepsilon[$ tel que $\Pi_M(\rho) \neq 0$. Ainsi, $M - \rho I$ est inversible et, en envisageant la norme

$$||M|| = \max_{1 \leqslant i, j \leqslant p} |m_{i,j}|$$

sur $\mathcal{M}_p(\mathbb{C})$, $||M - (M - \rho I)|| = ||\rho I|| \le \varepsilon$, ce qui assure la densité de $\mathcal{G}l_p(\mathbb{C})$ dans $\mathcal{M}_p(\mathbb{C})$.

3 Un premier affrontement

Proposition 3

Pour tout $M \in \mathcal{M}_p(\mathbb{C})$, $\exp(M)$ est un polynôme en M.

Pour $k \in \mathbb{N}^*$, on pose $Q_k(X) = 1 + X + ... + \frac{1}{k!}X^k \in \mathbb{C}[X]$. La matrice $\exp(M)$ est limite de la suite $(Q_k(M))$ à valeurs dans $\mathbb{C}[M]$. Or $\mathbb{C}[M]$ est un sous-espace de $\mathcal{M}_p(\mathbb{C})$ de dimension finie (égale au degré du polynôme minimal μ_M de M) donc est fermé dans $\mathcal{M}_p(\mathbb{C})$. Ainsi, $\exp(M) \in \mathbb{C}[M]$.

Existe-t-il un polynôme $Q \in \mathbb{C}[X]$ (universel) tel que : $\forall M \in \mathcal{M}_p(\mathbb{C})$ exp(M) = Q(M)?

On a une réponse immédiate si on se restreint au cône \mathcal{N} des matrices nilpotentes : pour $N \in \mathcal{N}$, l' indice de nilpotence est inférieure à p donc $\exp(N) = I + N + ... + \frac{1}{(p-1)!}N^{p-1}$. En revanche, le résultat est faux dans $\mathcal{M}_p(\mathbb{C})$. On raisonne par l'absurde ; On suppose qu'il existe un tel polynôme Q qui vérifie alors, en particulier,

$$\forall \lambda \in \mathbb{C}, \exp(Diag(\lambda, 0, ..., 0)) = Q(Diag(\lambda, 0, ..., 0)),$$

c-à-d

$$\forall \lambda \in \mathbb{C}, \left(\begin{array}{cccc} \exp(\lambda) & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 1 \end{array} \right) = \left(\begin{array}{cccc} Q(\lambda) & 0 & \dots & 0 \\ 0 & Q(0) & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & Q(0) \end{array} \right).$$

Ainsi l'exponentielle numérique coincide avec le polynôme $Q \in \mathbb{C}[X]$, ce qui est clairement faux.

4 L'union sacrée par Dunford

Si $N \in \mathcal{M}_p(\mathbb{C})$ est nilpotente, il existe $k \in \mathbb{N}^*$ tel que $N^k = 0$, donc $\det(N) = 0$, donc 0 est valeur propre de N. Soit λ une valeur propre complexe de N et $X \in \mathbb{C}^p$, $X \neq 0$ un vecteur propre associé. On a $N^k X = \lambda^k X = 0$ donc λ est nécessairement nul. Ainsi, on retiendra que $N \in \mathcal{N}$ a p fois la valeur propre 0 ou, de façon équivalente, son polynôme caractéristique est $\Pi_N(X) = (-1)^p X^p$. Puisque l'indice de nilpotence de N est inférieur à p, le polynôme Π_N est annulé par N. Soit maintenant D une matrice diagonalisable. Il existe $P \in \mathcal{G}l_p(\mathbb{C})$ et $\Delta = Diag(\lambda_1, ..., \lambda_p) \in \mathcal{D}$ tels que $D = P\Delta P^{-1}$. On a alors $\Pi_D(D) = P Diag(\Pi_D(\lambda_1), ..., \Pi_D(\lambda_p)) P^{-1} = 0$. Le célèbre théorème de Cayley-Hamilton affirme en fait que toute matrice M de $\mathcal{M}_p(\mathbb{C})$ (ou tout endomorphisme f de \mathbb{C}^p) annule son polynôme caractéristique. Pour le

justifier, on peut utiliser la densité de \mathcal{D} dans $\mathcal{M}_p(\mathbb{C})$, ce qui d'une certaine façon revient à négliger les matrices nilpotentes dans $\mathcal{M}_p(\mathbb{C})$. Grossièrement, on peut écrire $M \approx D$. La décomposition de Dunford abonde dans ce sens et apparaît comme une formule exacte. Afin d'éviter toute décomposition non pertinente comme

$$\underbrace{\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}}_{\text{diagonalisable}} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}}_{\text{diagonalisable}} + \underbrace{\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}}_{\text{nilpotente}},$$

Dunford se présente avec un cahier des charges bien rempli.

Théorème 1 (Décomposition de Dunford)

Soit f un endomorphisme de \mathbb{K}^p , de polynôme caractéristique scindé sur \mathbb{K} . Alors, il existe un couple (d, n) d'endomorphismes de \mathbb{K}^p tels que :

- 1. f = d + n
- 2. d est diagonalisable
- $3. \ n \ est \ nilpotent$
- 4. d et n commutent.

Par ailleurs, le couple (d, n) est unique dans $\mathcal{L}(\mathbb{K}^p) \times \mathcal{L}(\mathbb{K}^p)$. Enfin, d et n sont des polynômes en f.

Avec la réduction simultanée (cf partie 6), on peut montrer que les éléments propres de f sont exactement ceux de d, et en ce sens, le reste n, contenant peu de caractéristiques de f, semble vide et on a envi d'écrire f = d + o(d).

5 Une opposition dans les multiplicités de valeurs propres

Si $N \in \mathcal{M}_p(\mathbb{K})$ est nilpotente, $N \in \mathcal{N}$ a p fois la valeur propre 0. A contrario, une matrice diagonalisable de $\mathcal{M}_p(\mathbb{C})$ est statistiquement à spectre simple. C' est cette opposition dans les multiplicités de valeurs propres qui est traduite ici.

Propriété 1 (Endomorphismes nilpotents et trace des puissances)

Soit N une matrice $p \times p$ à coefficients complexes, telle que

$$\forall \ 1 \leqslant k \leqslant p, \quad Tr(N^k) = 0.$$

Alors le polynôme caractéristique de N est $C_N(X) = (-1)^p X^p$.

Le théorème de Cayley-Hamilton assure alors que N est nilpotente, et en définitive,

$$N \in \mathcal{M}_p(\mathbb{C})$$
 est nilpotente si, et seulement si, $\forall 1 \leq k \leq p$, $Tr(N^k) = 0$.

Puisque Cest agébriquement clos, le polynôme caractéristique de N s' écrit : $C_N(X) = (-1)^p \prod_{1 \leqslant i \leqslant p} (X - \lambda_i)$

avec $\lambda_i \in \mathbb{C}$. On remarque que λ_i^k est valeur propre de N^k $(k \ge 1)$ donc les valeurs propres de N^k sont exactement les λ_i^k . Si N possède une valeur propre non nulle, on note $\mu_1, ..., \mu_s$ les valeurs propres distinctes non nulles de N et $n_1, ..., n_s$ (dans \mathbb{N}^*) leur multiplicité. On peut écrire :

$$\begin{cases} n_1\mu_1 + \dots + n_s\mu_s = 0\\ n_1\mu_1^2 + \dots + n_s\mu_s^2 = 0\\ \vdots & \vdots\\ n_1\mu_1^s + \dots + n_s\mu_s^s = 0 \end{cases}$$

On interprète ces équations comme un système $s \times s$ en $n_1, ..., n_s$ dont le déterminant de type Vandermonde vaut :

$$\begin{pmatrix} \mu_1 & \mu_2 & \dots & \mu_s \\ \mu_1^2 & \mu_2^2 & \dots & \mu_s^2 \\ \vdots & & & \vdots \\ \mu_1^s & \mu_2^s & \dots & \mu_s^s \end{pmatrix} = \mu_1 \dots \mu_s \prod_{1 \leqslant i < j \leqslant s} (\mu_j - \mu_i) \neq 0.$$

Ainsi, $n_1 = \cdots = n_s = 0$, ce qui est absurde.

Proposition 4

Soit $M \in \mathcal{M}_p(\mathbb{C})$, $M \neq 0$. Si $Tr(M) = ... = Tr(M^{p-1}) = 0$, alors M est nilpotente ou diagonalisable.

Si $Tr(M^p) = 0$, M est nilpotente en vertu de la propriété 1. On suppose que $Tr(M^p) \neq 0$. La matrice M a donc des valeurs propres non nulles. Soit $\mu_1, ..., \mu_s$ les valeurs propres distinctes de M et $n_1, ..., n_s$ leur multiplicité non nulle dans Π_M . Si s < p, on peut écrire

$$\begin{cases} n_1\mu_1 + \dots + n_s\mu_s &= 0\\ n_1\mu_1^2 + \dots + n_s\mu_s^2 &= 0\\ \vdots & & \vdots\\ n_1\mu_1^s + \dots + n_s\mu_s^s &= 0 \end{cases} \text{ i.e. } A \begin{pmatrix} n_1\\ \vdots\\ n_s \end{pmatrix} = 0$$

οù

$$A = \begin{pmatrix} \mu_1 & \mu_2 & \dots & \mu_s \\ \mu_1^2 & \mu_2^2 & \dots & \mu_s^2 \\ \vdots & & & \vdots \\ \mu_1^s & \mu_2^s & \dots & \mu_s^s \end{pmatrix} \text{ de déterminant } \mu_1 \dots \mu_s \prod_{1 \leqslant i < j \leqslant s} (\mu_j - \mu_i) \neq 0 \text{ est inversible.}$$

Contradiction puisque $\begin{pmatrix} n_1 \\ \vdots \\ n_s \end{pmatrix} \neq 0$. Ainsi s=p, ou encore le spectre de M est simple et M est diagonalisable.

6 De la commutation pour compenser les lacunes de structures

Si on pose $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, on remarque que $N + {}^t N$ (inversible) n'est pas nilpotente alors que N et ${}^t N$ le sont. Par ailleurs, $N \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ (idempotente non nul) n'est pas nilpotente, ce qui veut dire que le cône $\mathcal N$ des matrices nilpotentes n'a pas de pouvoir d'absorption. La commutativité vient compenser les lacunes de stabilité sur $\mathcal N$:

- La somme de deux endomorphismes nilpotents qui commutent est nilpotente (cf exercice 3, page 8).
- La composée d'un endomorphisme nilpotent et d'un endomorphisme (quelconque) qui commutent est nilpotente.

Exercice 2

On pose $E = \mathcal{M}_p(\mathbb{C})$. Pour $A \in E$, on note Ad_A l'élément de $\mathcal{L}(E)$ défini par :

$$Ad_A: M \mapsto AM - MA$$
.

Si A est nilpotente (respectivement diagonalisable), alors Ad_A l'est aussi.

On note L_A et R_A les endomorphismes de E donnés par les multiplications à gauche et à droite par A. Si A est nilpotente, il en est de même de L_A et R_A et, puisque L_A et R_A commutent, de leur différence Ad_A . On remarque que si A est semblable à B ($B = P^{-1}AP$, $P \in \mathcal{G}l_p(\mathbb{K})$), $\theta : M \mapsto P^{-1}MP \in \mathcal{G}l(E)$ et $Ad_B = \theta Ad_A\theta^{-1}$. Autrement dit, Ad_A et Ad_B sont semblables dès que A et B le sont. A présent, si A est diagonalisable, A est semblable à la matrice diagonale A est Ad_A est semblable à Ad_A . Or, pour chaque matrice élémentaire Ad_A (associés aux valeurs propres Ad_A). Ainsi Ad_A est diagonalisable.

La réduction simultanée compense les lacunes de structure sur le(s) cône(s) des endomorphismes diagonalisables (et trigonalisable). En effet, on montre que

- 1. la somme d'endomorphismes diagonalisables qui commutent est diagonalisable (cf exercice 3, page 8).
- 2. la composée d'endomorphismes diagonalisables qui commutent est encore diagonalisable. grâce au résultat de codiagonalisation :

Propriété 2

Si D et Δ sont deux matrices diagonalisables de $\mathcal{M}_p(\mathbb{C})$, alors D et Δ sont simultanément diagonalisables si, et seulement si, D et Δ commutent.

7 Deux propriétés antinomiques

"Être nilpotent" et "être diagonalisable" sont des propriétés antinomiques :

 \mathcal{F} la seule matrice A à la fois nilpotente et diagonalisable est la matrice nulle A=0.

Directement, puisque A est diagonalisable, on écrit $A = P\Delta P^{-1}$ avec Δ diagonale et P inversible. Il vient

$$\forall k \in \mathbb{N}^*, \ \Delta^k = P^{-1}A^kP$$

donc, avec A nilpotente, Δ est diagonale nilpotente, donc nulle, ce qui assure A=0. Voici trois utilisations du fait \mathcal{F} .

Exercice 3 (Unicité de la décomposition de Dunford, page 6)

On admet la construction d'une décomposition (d, n) de f où d et n sont des polynômes en f. Avec des notations évidentes, soit (d', n') une autre décomposition de f.

Puisque
$$f = d + n = d' + n'$$
, $n - n' = d' - d$.

- -f = d' + n' commute avec d' et n' puisque d'n' = n'd'.
- -dd'=d'd puique d est un polynôme en f. Comme, de plus, d et d' sont diagonalisables, d'-d est diagonalisable.
- De même, n commute avec n'. Comme, de plus, n et n' sont nilpotentes, n-n' est nilpotente. Bilan: n-n' est nilpotente et diagonalisable donc n=n' (et d=d').

Exercice 4 (Théorème de Burnside)

Soit G un sous-groupe de $\mathcal{G}l_p(\mathbb{C})$. On suppose qu'il existe $e \in \mathbb{N}$ tel que $\forall A \in G, A^e = I_p$. Alors G est fini.

Soit \mathcal{G} le sous-espace de $\mathcal{M}_p(\mathbb{C})$ engendré par G. On complète la partie libre \oslash par des éléments de la partie génératrice G pour former une base $(C_1, ..., C_r)$ de \mathcal{G} . Un élément de G est repéré dans la base $(C_1, ..., C_r)$ mais on cherche un autre système de repérage qui assure la finitude de G. Pour cela, on souhaite plonger (d'un point de vue ensembliste) G dans \mathbb{C}^r par $T: A \mapsto (Tr(AC_k))_{1 \leqslant k \leqslant r}$. On suppose momentanément l'injectivité de T prouvée. Pour montrer que G est fini, il suffit de vérifier que T(G) est fini. Un élément de T(G) est un T-uplet, chaque composante du T-uplet étant une somme de T valeurs propres (distinctes ou non) d'un élément

de G. Puisque $X^e - 1$ est un polynôme complexe annulateur de tout élément de G, le spectre global des éléments de G est contenu dans l'ensemble des e racines $e^{\grave{e}mes}$ de l'unité et $Card(T(G)) \leq [(e^p)]^r \leq [e^p]^{p^2}$.

On retourne à l'injectivité de G. Soit A et B dans G telles que T(A) = T(B). On veut A = B, i.e A - B = 0. La matrice A - B "sort" du groupe, tout comme $AB^{-1} - I$, mais $AB^{-1} - I$ "reste" un peu plus longtemps dans G et fait apparaître la rassurante I. Comment montrer que $AB^{-1} - I$ est nulle?

* $AB^{-1} - I$ est diagonalisable.

En effet, $AB^{-1} \in G$ l'est car annule le polynôme $X^e - 1$ scindé à racines simples dans \mathbb{C} . Soit $P \in \mathcal{G}l_n(\mathbb{C})$, D diagonale telles que $AB^{-1} = PDP^{-1}$. Facilement $AB^{-1} - I = P(D-I)P^{-1}$.

* $AB^{-1} - I$ est nilpotente.

On pose $M = AB^{-1}$ et, pour $1 \le k \le p$,

$$Tr(M^k) = Tr(A \underbrace{B^{-1}M^{k-1}}_{\text{combinaison linéaire des }(C_j)}).$$

Or T(A)=T(B), donc $Tr(M^k)=Tr(B\ B^{-1}M^{k-1})=Tr(M^{k-1})=Tr(I)=p$. Par la formule de Newton $(M=AB^{-1}$ et I commutent) et la linéarité de la trace, $Tr((M-I)^k)=p\sum\limits_{l=0}^k (-1)^l C_k^l=0$. Aussi, $M-I=AB^{-1}-I$ est nilpotente.

D'où l'injectivité de G et la fin de la preuve.

Exercice 5

Soit f un endomorphisme de \mathbb{C}^p tel que $\exp(f)$ est diagonalisable. Alors f est aussi diagonalisable.

On écrit, avec des notations évidentes, la décomposition de Dunford de f: f = d + n.

- Puisque d et n commutent, $\exp(f) = \exp(d) \exp(n)$ ou $\exp(n) = \exp(-d) \exp(f)$.
- Puisque d est un polynôme en f, d et f commutent donc

$$\exp(-d) \exp(f) = \exp(-d + f) = \exp(f - d) = \exp(f) \exp(-d).$$

Comme, de plus, $\exp(-d)$ (avec d) et $\exp(f)$ sont diagonalisables, la composée $\exp(n) = \exp(-d) \exp(f)$ est aussi diagonalisable.

- Enfin, $\exp(n) - I = n... + \frac{1}{(p-1)!}n^{p-1}$ est nilpotent (comme somme de nilpotents qui commutent) et diagonalisable (comme somme de deux diagonalisables qui commutent) donc est nul. Ainsi, le polynôme minimal μ_n de n (un certain X^r) divise $X + ... + \frac{1}{(p-1)!}X^{p-1}$, donc $\mu_n = X$, n = 0 et f est diagonalisable.

8 Caractérisation topologique des éléments de $\mathcal N$ et $\mathcal D$

Proposition 5

- 1. Une matrice complexe N est nilpotente si, et seulement si, la matrice nulle est adhérente à la classe de similitude de N.
- 2. Si une matrice complexe D a une classe de similitude fermée, alors D est diagonalisable.
- 3. Si une matrice complexe D est diagonalisable, alors la classe de similitude de D est fermée.

On commence par

Lemme 3 Si M est une matrice de $\mathcal{M}_p(\mathbb{C})$ et si f est l'endomorphisme de \mathbb{C}^p représenté dans la base canonique B_0 par M, on peut mettre f sous forme trigonale, avec des coefficients arbitrairement petits dans le triangle supérieur strict.

Il existe une base $B = (e_1, ..., e_p)$ de \mathbb{C}^p telle que la matrice $T = Mat_B(f)$ de f dans B est triangulaire. En notant P la matrice de passage de B_0 à B, $T = Mat_B(f) = P^{-1}MP$ a la forme :

$$T = Mat_B(f) = \begin{pmatrix} \lambda_1 & a_{1,2} & \cdots & a_{1,p} \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & a_{p-1,p} \\ 0 & 0 & \cdots & \lambda_p \end{pmatrix}$$

Pour t > 0, on envisage la base $B_t = (e'_1 = te_1, e' - 2 = t^2e_2, ..., e'_p = t^pe_p)$ de \mathbb{C}^p et, si $P_t = Diag(t, t^2, ..., t^p)$ est la matrice de passage de B à B_t , la matrice de f dans B_t est

$$T_{t} = Mat_{B_{t}}(f) = P_{t}^{-1} Mat_{B}(f) P_{t} = P_{t}^{-1} TP_{t} = (PP_{t})^{-1} M PP_{t} = \begin{pmatrix} \lambda_{1} & ta_{1,2} & \cdots & t^{p-1}a_{1,p} \\ 0 & \lambda_{2} & & \vdots \\ \vdots & & \ddots & ta_{p-1,p} \\ 0 & 0 & \cdots & \lambda_{p} \end{pmatrix}.$$

<u>Pour 1</u>: Soit $N = (n_{i,j})$ une matrice complexe nilpotente. D'après le lemme 3, pour $k \in \mathbb{N}^*$, il existe une matrice $N_k = (n_{i,j}(k))$ semblable à N et triangulaire telle que $\forall i < j \mid n_{i,j}(k) \mid \leqslant \frac{1}{k}$. Puisque par ailleurs $n_{i,i}(k) = n_{i,i} = 0$, la suite (N_k) converge vers la matrice nulle. Réciproquement, si il existe une suite (N_k) de matrices semblables à N qui converge vers 0, par continuité de $M \mapsto \Pi_M$, la suite (Π_{N_k}) , constante de valeur Π_N , converge vers $\Pi_0 = (-1)^n X^n$, donc $\Pi_N = (-1)^n X^n$ et, par le théorème de Cayley-Hamilton, N est nilpotente.

<u>Pour 2</u> : Soit D une matrice complexe. Puisque $\mathbb C$ est algébriquement clos, D est semblable à une matrice triangulaire

$$T = \begin{pmatrix} \lambda_1 & a_{1,2} & \cdots & a_{1,p} \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & a_{p-1,p} \\ 0 & 0 & \cdots & \lambda_p \end{pmatrix}$$

et à toutes les matrices triangulaires

$$k > 0, T_k = \begin{pmatrix} \lambda_1 & \frac{1}{k} a_{1,2} & \cdots & \frac{1}{k^{p-1}} a_{1,p} \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & \frac{1}{k} a_{p-1,p} \\ 0 & 0 & \cdots & \lambda_p \end{pmatrix}.$$

La suite (T_k) converge vers la matrice diagonale $\Delta = Diag(\lambda_1, ..., \lambda_n)$ donc, si la classe de similitude de D est fermée, D est diagonalisable semblable à Δ .

<u>Pour 3</u>: Soit D une matrice complexe diagonalisable. On note Cl(D) sa classe de similitude. Soit (D_k) une suite de Cl(D) qui converge vers \tilde{D} . Pour tout $k \in \mathbb{N}^*$, le polynôme minimal de D_k est $\mu_{D_k} = \mu_D$ donc $\mu_D(D_k) = 0$. Par continuité de $M \mapsto \mu_D(M)$, \tilde{D} annule le polynôme μ_D qui est scindé à racines simples, donc \tilde{D} est diagonalisable. Par continuité de l'application qui à une matrice M associe son polynôme caractéristique Π_M , la suite (Π_{D_k}) constante de valeur Π_D , converge vers $\Pi_{\tilde{D}}$, donc D et \tilde{D} ont le même polynôme caractéristique donc les mêmes valeurs propres. Comme elles sont de plus diagonalisables, D et \tilde{D} sont semblables, ce qui achève la preuve.

Un piège est d'évoquer une prétendue continuité de $M \mapsto \mu_M$ puis affirmer que $\mu_{\tilde{D}} = \mu_D$ est scindé à racines simples. Pour se convaincre que $M \mapsto \mu_M$ n'est pas continue, on peut considérer

- 1. la suite de \mathcal{N} de terme général $N_k = \begin{pmatrix} 0 & \frac{1}{n} \\ 0 & 0 \end{pmatrix}$ avec $\mu_{N_k} = X^2$, qui converge vers la matrice nulle de polynôme minimal X
- 2. ou la suite de \mathcal{D} de terme général $D_k = \begin{pmatrix} \frac{1}{n} & 0 \\ 0 & \frac{2}{n} \end{pmatrix}$ avec $\mu_{D_k} = (X \frac{1}{n})(X \frac{2}{n})$, qui converge vers la matrice nulle de polynôme minimal X.

9 Trace de \mathcal{N} et de \mathcal{D} sur le cône des matrices cycliques

Dans le cône \mathcal{D} , les matrices à spectre simple sont en position de force. Quel est son analogue dans \mathcal{N} ? Ce sont les nilpotentes à noyau minimal de dimension 1 (ou de rang maximal p-1) (dont l'ensemble est noté \mathcal{N}_{max}) qui ont pignon sur rue dans le cône \mathcal{N} . Si $N \in \mathcal{N}$ est semblable à

$$T = P^{-1}NP = \begin{pmatrix} 0 & a_{1,2} & \cdots & a_{1,p} \\ 0 & 0 & & \vdots \\ \vdots & & \ddots & a_{p-1,p} \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

et si, pour k dans \mathbb{N}^* , on note ε_k la matrice qui a $\begin{cases} 0 & \text{si } a_{i,i+1} \neq 0 \\ \frac{1}{k} & \text{sinon} \end{cases}$ en position (i, i+1) et des 0 partout

ailleurs, $P(T+\varepsilon_k)P^{-1}$ est nilpotente arbitrairement proche de N et son rang est p-1. En effet, le déterminant extrait obtenu en supprimant la dernière ligne et la première colonne de $T+\varepsilon_k$ est non nul par construction. On a montré que le fermé \mathcal{N} est contenu dans l'adhérence de \mathcal{N}_{max} ou $\overline{\mathcal{N}_{\text{max}}} = \mathcal{N}$.

Exercice 6 Pour $N \in \mathcal{N}$, on a les équivalences

- 1. N est de rang maximal p-1 ou, par le théorème du rang, Ker(N) est une droite.
- 2. N est d'indice de nilpotence maximal p.

9.1 Description des générateurs cycliques

Soit $M \in \mathcal{M}_p(\mathbb{C})$. Lorsqu'on parcourt \mathbb{C}^p à la recherche de générateurs cycliques potentiels, on évite les sous-espaces propres de M puisqu'à la première itération, on a perdu la liberté. Demander à M d'être cyclique, c' est exiger d'abord que ses sous-espaces propres ne soient pas trop gros. Par ailleurs, sous cette condition, un vecteur x de \mathbb{C}^p a des chances d'être cyclique s'il est suffisamment éloigné des sous-espaces propres. Comment cela se traduit-il chez \mathcal{N} et \mathcal{D} ?

Proposition 6

Soit n un endomorphisme de \mathbb{C}^p nilpotent. L'endomorphisme n est cyclique si, et seulement si, n est de rang p-1, ou encore $\dim(\operatorname{Ker} n)=1$.

Pour n nilpotent de rang p-1 et pour $x \in \mathbb{C}^p$, on a les équivalences :

- 1. Le vecteur x est un générateur n cyclique de \mathbb{C}^p
- 2. La famille $(x, n(x), ..., n^{p-1}(x))$ est une base de \mathbb{C}^p
- 3. Le vecteur x est hors de $Ker(n^{p-1})$.

Si n est nilpotent et cyclique, n est représenté dans une base par une matrice C compagnon et nilpotente. Son polynôme caractéristique est $\Pi_n = \Pi_C = (-1)^p X^p$ donc C est (la cellule nilpotente de Jordan)

$$C = \begin{pmatrix} 0 & & 0 \\ 1 & \ddots & 0 \\ & \ddots & 0 & \vdots \\ & & 1 & 0 \end{pmatrix}.$$
 Le rang de C est clairement strictement inférieur à p et, puisque le déterminant

extrait obtenu en supprimant la première ligne et la dernière colonne de C vaut 1, C est de rang p-1. Réciproquement, si n est nilpotente de rang p-1, on choisit x hors de $Ker(n^{p-1})$ et on vérifie que les p vecteurs x, n(x), ..., $n^{p-1}(x)$ sont linéairement indépendants.

Proposition 7

Soit d'un endomorphisme diagonalisable de \mathbb{C}^p . On a les équivalences :

- 1. \mathbb{C}^p a des générateurs d-cycliques.
- 2. Les valeurs propres de d sont deux à deux distinctes.

Dans ce cas, $x \in \mathbb{C}^p$ est un générateur d-cyclique de \mathbb{C}^p si, et seulement si, x a chaque coordonnée non nulle dans une base de diagonalisation.

Soit $(e_1,...,e_p)$ une base de vecteurs propres de d associés aux valeurs propres $\lambda_1, ..., \lambda_p$. Un vecteur $x = \sum_{i=0}^p x_i e_i$ est générateur d-cyclique de \mathbb{C}^p équivaut à dire que $\{x,...,d^{p-1}(x)\}$ est une base de \mathbb{C}^p , ce qui se traduit par la non nullité du déterminant :

$$\begin{vmatrix} x_1 & \lambda_1 x_1 & \lambda_1^{p-1} x_1 \\ \vdots & \vdots & \vdots \\ x_p & \lambda_p x_p & \lambda_p^{p-1} x_p \end{vmatrix} = \prod_{i=1}^p x_i \prod_{1 \le i < j \le p} (\lambda_j - \lambda_i).$$

D'où les résultats.

9.2 Commutant

Proposition 8

Soit D une matrice complexe $p \times p$ ayant toutes ses valeurs propres distinctes. Le commutant C(D) de D est le sous-espace $\mathbb{C}[D]$ de $\mathcal{M}_p(\mathbb{C})$ et admet $(I, D, ..., D^{p-1})$ pour base.

On remarque que si θ désigne l'endomorphisme $M \mapsto DM - MD$ de $\mathcal{M}_p(\mathbb{C}), \mathcal{C}(D)$ est exactement le noyau de θ . On note ensuite que D de valeurs propres distinctes $(\lambda_1,...,\lambda_p)$ est diagonalisable semblable à $\Delta = Diag(\lambda_1,...,\lambda_p)$. Soit alors $P \in \mathcal{G}l_p(\mathbb{C})$ tel que $\Delta = P^{-1}DP$. Pour $M \in \mathcal{M}_p(\mathbb{C}), DM = MD$ équivaut à $\Delta M' = M'\Delta$ où $M' = (m'_{i,j}) = P^{-1}MP$. Or en position (i,j), le terme de $\Delta M'$ est $\lambda_i m'_{i,j}$ et celui de $M'\Delta$ est $m_{i,j}\lambda_j$. Ainsi, $M \in \mathcal{C}(D)$ si, et seulement si, $\forall i \neq j, m'_{i,j}(\lambda_i - \lambda_j) = 0$, ou encore $\forall i \neq j, m'_{i,j} = 0$ puisque $\lambda_i \neq \lambda_j$, i.e M' est diagonale. Le commutant $\mathcal{C}(D)$ est donc le sous-espace engendré par les p matrices élémentaires $E_{i,i}$. Comme $I, D, ..., D^{p-1}$ sont aussi dans $\mathcal{C}(D)$, on termine la preuve si on justifie leur indépendance linéaire. Ceci équivaut à l'indépendance de $(I, \Delta, ..., \Delta^{p-1})$ ou encore à la non nullité du

déterminant de Van der Monde $\begin{vmatrix} 1 & \lambda_1 & \dots & \lambda_1^{p-1} \\ \vdots & & & \vdots \\ 1 & \lambda_p & \dots & \lambda_p^{p-1} \end{vmatrix}$, qui est bien vraie puisque les λ_i sont distincts.

Proposition 9

Si n est un endomorphisme nilpotent de rang p-1 de \mathbb{C}^p , alors le commutant $\mathcal{C}(n)$ de n est le sous-espace $\mathbb{C}[n] = \{Q(n), \ Q \in \mathbb{C}[X]\}$ de $\mathcal{L}(\mathbb{C}^p)$ et admet $(I, n, ..., n^{p-1})$ pour base.

Soit x_0 dans \mathbb{C}^p hors de $\operatorname{Ker}(n^{p-1})$. On vérifie que la famille $(x_0, n(x_0), ..., n^{p-1}(x_0))$ à p vecteurs est libre donc est une base de \mathbb{C}^p . Clairement $\mathbb{C}[n]$ est contenu dans $\mathcal{C}(n)$. Réciproquement, si $g \in \mathcal{L}(\mathbb{C}^p)$ est tel que $[n, g] = n \circ g - g \circ n = 0$, g est entièrement déterminé par $g(x_0)$. En effet,

$$g(n^k(x_0)) = n^k(g(x_0))$$
 dès que $0 \le k \le p - 1$.

Précisément, si $g(x_0) = \alpha_0 x_0 + \alpha_1 n(x_0) + ... + \alpha_{p-1} f^{p-1}(x_0)$, alors $g = \alpha_0 I d_E + \alpha_1 n + ... + \alpha_{p-1} n^{p-1}$.

9.3 Sous-espaces stables

Proposition 10

Si d est un endomorphisme diagonalisable de \mathbb{C}^p , les sous espaces stables de d sont en nombre fini si, et seulement si, les sous espaces propres de d sont des droites, ce qui revient à dire que d est diagonalisable à spectre simple.

Si d a un sous-espace propre E de dimension supérieure à 2, on choisit une famille libre $(\varepsilon_1, \varepsilon_2)$ de E et toute droite $\mathbb{C}(\varepsilon_1 + \lambda \varepsilon_2)$ de E (il y en a une infinité puisque λ est un scalaire arbitraire de \mathbb{K}) est stable par d. Réciproquement, si chaque sous espace propre est une droite, le nombre de sous-espaces propres est p. On appelle $E_1, ..., E_p$ les droites propres. Tout sous-espace d stable F s'écrit $F = \bigoplus_{i \in \mathcal{E}} F_i$ avec $F_i \subset E_i$.

Nécessairement, $F_i = \{0\}$ ou $F_i = E_i$, ce qui donne au total 2^p possibilités pour F.

Proposition 11

1. Les sous-espaces de \mathbb{C}^p stables par

$$N = \left(\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{array} \right)$$

sont en nombre fini (p+1) et sont exactement les noyaux des puissances de N.

- 2. Si n est un endomorphisme nilpotent de $\mathcal{M}_p(\mathbb{C})$, on a les équivalences :
 - (a) Les sous espaces stables de n sont en nombre fini.
 - (b) Le noyau de n (le seul sous espace propre de n) est une droite.

<u>Pour 1</u>: La matrice N est de rang p-1 (considérer le déterminant extrait obtenu en supprimant la dernière ligne et la première colonne) donc son noyau est une droite. Le calcul des puissances de N est facile puisque la sur-diagonale de 1 s'échappe vers le haut à chaque itération. Pour $1 \le i \le p$, N^i a donc ses i premières colonnes remplies de 0 donc $dim(\operatorname{Ker} N^i) \ge i$, et toujours par déterminant extrait, $\operatorname{rg}(N^i) \ge n-i$, ce qui donne en définitive

$$dim(\operatorname{Ker} N^i) = i.$$

Soit F un sous-espace de \mathbb{C}^p de dimension i stable par N. On envisage l'endomorphisme \tilde{N} induit par N sur F qui est, comme N, nilpotente. Ainsi, $\tilde{N}^i = 0$ donc $\forall X \in F, \ N^i X = 0$, ce qui signifie $F \subset \operatorname{Ker} N^i$. Pour des raisons de dimension, F est exactement le noyau de N^i .

<u>Pour 2</u>: L'implication $(a) \Rightarrow (b)$ s'obtient par contraposition comme dans la proposition précédente. Réciproquement, on choisit un vecteur e hors de Ker n^{p-1} et la matrice de n dans la base $(n^{p-1}(e), ..., n(e), e)$ est N. D'où le résultat avec le (1).