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Newton's Rule of Signs for Imaginary Roots 


Daniel J. Acosta 

1. INTRODUCTION. Descartes proposed the following rule in La Geometrie 
(1637): 

We can determine also the number of true and false roots that an equation can have, as follows: 
An equation can have as many true roots as it contains changes of sign, from + to - or from 
- to +; and as many false roots as the number of times two + signs or two - signs are found 
in succession [3,p. 1601. 

Descartes did not provide a proof for this rule, which forms the basis of the proposi- 
tion now known as Descartes's Rule of Signs [1],[6].This rule yields an upper bound 
for the number of positive (true) roots of a given polynomial and an upper bound for 
the number of negative (false) roots by counting variations and permanences in the 
sequence of plus and minus signs obtained from the coefficients of the polynomial 
when written in descending order: p(x) = C:=, ~ , - ~ x " - ' .  For example, the polyno- 
mial p(x) = x4 - x3 - 19x2+ 49x - 30 has the sequence of signs + - - + -. This 
indicates three positive roots by the three variations (or changes) in sign, and one neg- 
ative root in view of the one permanence, when the sign does not change. Descartes 
himself knew that his rule established only upper bounds on the number of positive 
and negative real roots, and Newton reiterated this point, stating that in many cases 
some of the roots will be "impossible." To Newton, "impossible" meant complex but 
not real, what the term "imaginary" signifies in this context today. 

Newton devised a rule that provides a lower bound for the number of imaginary 
roots of a polynomial by considering variations and permanences in a sequence of 
signs obtained from the polynomial. In spirit then, this is similar to Descartes's Rule. 
However, Newton obtained his sequence of signs from the polynomial in quite a dif- 
ferent, and more involved, manner. Newton discovered the rule in approximately 1666 
and later inserted a brief account of it into his Lucasian lectures of October 1681, 
which are printed in the Arithmetica Universalis (1707). 

2. NEWTON'S INCOMPLETE AND COMPLETE RULES. Consider a polyno- 
mial 

with real coefficients that is written in the indicated form. The simple elements of p(x)  
are defined as a,, a,-1, a,-2, . . . ,ao, while the quadratic elements of p(x) are de- 
fined to be Q,, Q,-I ,  Qn-2, . . . , Qo, where Q,  = a:, Q,,-I = a:-, - anan-2, Qn-2 = 

2 2 2an-2 - an-lan-3, . . . , Qi = al - a2a0, Qo = aO. 

Theorem 2.1 (Newton's Incomplete Rule). Suppose that the quadratic elements for 
a polynomial p(x) are all nonzero. Then the number of variations in sign in the se- 
quence Q,, e ,-~,e , - ~ ,. . . , Qo furnishes a lower bound for the number of imaginary 
roots of p (x). 
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Note that this bound is necessarily an even number, for both Q ,  and Qo are positive. 
This makes sense, since complex roots come in conjugate pairs, as Newton knew. 
In what follows, we focus on the generic situation of nonzero simple elements and 
nonzero quadratic elements. However, we discuss the possibility that a, = 0 or Q; = 0 
in section 6.  

As an example, consider p(x )  = x5 - 5x4 + 4x3 - 2x2 - 5x - 4. The simple 
elements are computed to be 1, -5 /5 ,4 /  10, -21 10, -51.5, -4, which produce the 
following quadratic elements: 1,6 /  10, -4/100,44/ 100, 2/10, 16. The resulting se-
quence of signs is + + - + ++, which indicates at least two imaginary roots by 
Newton's Incomplete Rule. The following corollaries demonstrate that in some cases 
the rule provides knowledge of the existence of a single pair of imaginary roots without 
the labor of creating the sequence of signs. 

Corollary 2.2. For a polynomial p ( x )  = C:=, P,-~x*-;,the relation 

for some r indicates the existence of a pair of imaginary roots. 

Proo$ Recall that 

1 n - r + l  -- [ - ( )  ( ) Pr+i p r - l ]  . 
(;I2 n - r  

Up to sign we can ignore the first constant, and using 

we have 

2P: - (*) ( n  -:+ l )  pr+~. pr-I < pr - r pr-1.
n - r  

which is negative by hypothesis. Thus Q ,  is negative. Again, since both Q,  and Qo are 
positive, the sequence of quadratic elements will have at least two variations in sign. 
Newton's Incomplete Rule guarantees at least one pair of imaginary roots. 

For example, the polynomial p(x )  = x3  - 2x2+4x - 16 has a pair of imaginary roots 
because 42 < -2 . -16. 

Corollary 2.3. For a polynomial p ( x )  = Cr=op,-;xn-', the fact that both Ipr 1 < 
Ipr+,I and Ipr 1 < Ipr-l I holdfor some r, with pr+l and pr-1 of the same sign, indicates 
the existence of a pair of imaginary roots. 

Proo$ The coefficients satisfy the condition of Corollary 2.2. 

As an example, the polynomial p ( x )  = x3 - 3x2 + 2x - 4 has a pair of imaginary 
roots because 121 < I - 31 and 121 < I - 41. 
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Because Newton's Incomplete Rule furnishes a lower bound for the number of 
imaginary roots possessed by a polynomial, an upper bound for the number of real 
roots is also obtained. In fact, Newton improved upper bounds derived by application 
of the Descartes Rule. We can ascertain that a pair of imaginary roots indicated by cer- 
tain quadratic elements is hidden among the number of positive real roots or negative 
real roots predicted by Descartes's Rule by considering variations and permanences of 
the corresponding simple elements. This is Newton's Complete Rule, in which both 
the simple and quadratic sequences are examined. We write the simple elements as a 
horizontal sequence on top, and the quadratic elements as a horizontal sequence on the 
bottom: 

We concentrate on the associated pairs of consecutive elements, 

We want to consider the possible sign change in the top pair and the possible sign 
change in the bottom pair, giving rise to four possibilities. We use the notation v V ,  
U P ,  p V ,  and pP,  where the first character always refers to the behavior of signs on 
the top and the second character refers to the behavior of signs on the bottom. The 
letters v and V denote a variation in sign; the letters p and P denote a permanence in 
sign. Thus, vV denotes a change in sign from the top pair a,,, a, and a change in sign 
from the associated bottom pair Q,+, Q,. The symbol U Pdenotes a change in sign 
from the top pair a,+~ a, but a permanence in sign from the bottom pair Q,+] Q,. The 
symbols p V and p P have analogous meanings. 

Theorem 2.4 (Newton's Complete Rule). Suppose that the simple and quadratic el- 
ements for a polynomial p ( x )  are all nonzero and are displayed as in (1). Then the 
total number of double permanences, written xp P, is an upper bound for the num- 
ber of negative roots of p (x ) ,  and the total number of variation-permanences, written zv P, is an upper bound for the number of positive roots. 

The second conclusion of the theorem follows from the first by considering p(-x) .  
As a corollary, the total number of real roots is less than or equal to the sum of double 
permanences and variation-permanences, i.e., to the total number C P of permanences 
in the sequence of quadratic elements. Hence, the total number of imaginary roots 
is greater than or equal to n -xP = C V ,  the total number of variations in the 
sequence of quadratic elements. This is of course Newton's Incomplete Rule, which is 
now seen to be subsumed under the Complete Rule. 

In our earlier example, p ( x )  = x5 - 5xJ + 4x3 - 2x2 - 5x - 4 ,  the associated se- 
+ - + - - -

quences of simple and quadratic elements are + + - + + + , revealing one 

variation-permanence and two double permanences, and thus indicating one positive 
root and at most two negative roots. Descartes's Rule predicts at most three positive 
roots and at most two negative roots. This particular quintic actually has one posi- 
tive root and four imaginary roots. 

Newton's Complete Rule gives full knowledge of the nature of the roots for any 
polynomial that has no more imaginary roots than the rule discloses, unlike the case of 
the aforementioned quintic. Newton was of the opinion that this latter scenario rarely 
happens, but nonetheless provided the example of p(x )  = x" 3a2x - 3a3, which 
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produces quadratic elements with sign pattern + + ++, thereby concealing the two 
imaginary roots found by employing Cardan's resolution of the cubic. Newton added 
that in such cases one could alter the roots by a change of variable from x to x + p [S, 
p.5291: 

And if there be any impossible roots it will rarely happen that they shall not be discovered in 
two or three such trials. Nor can there be an equation whose impossible roots may not be thus 
discovered. 

This cryptic comment forms the key to Sylvester's proof of Newton's Complete Rule 
wherein he meticulously charts how the simple and quadratic sign patterns change for 
the polynomials p(x +A)as A moves continuously through R.This technique is anal- 
ogous to one devised by Fourier, who in 1796 proved a generalization of Descartes's 
Rule that was published posthumously in 183 1 [4]. 

3. WITHOUT A PROOF. Newton offered no proof for his incomplete or complete 
rules. It is not difficult to show that a variation in the signs produced by Newton's 
Incomplete Rule indicates a pair of imaginary roots [7]. George Campbell published 
a proof in 1728 [2], and Colin Maclaurin treated the same matter as part of a lengthy 
letter to Martin Folkes dealing with roots of equations. The letter was later published 
in 1730 [S]. However, it does not follow that each occurrence of a double sign change 
indicates a separate pair of imaginary roots. Edward Waring, who in 1760 became Lu- 
casian Professor of Mathematics at Cambridge, pointed this out in 1782, prior to which 
many believed Campbell's restricted result proved Newton's Incomplete Rule. Subse- 
quently, many attempted rigorous justification of the incomplete rule, and yet a true 
proof was not forthcoming until J.J. Sylvester provided one in 1865. Sylvester entitled 
his paper "On an Elementary Proof and Generalization of Sir Isaac Newton's Hitherto 
Undemonstrated Rule for the Discovery of Imaginary Roots"[7]. Sylvester mentioned 
that all previous work amounted to showing only the existence of a single pair of com- 
plex roots once a variation was produced, with no progress at all concerning Newton's 
Complete Rule. He furthermore devoted a postscript to tearing apart a supposed proof 
of Newton's Incomplete Rule given twenty years earlier by a Professor J. R. Young, 
who claimed priority over Sylvester. Sylvester characterized the work as "a so-called 
proof," and "such stuff as dreams are made of." 

We now describe the notation necessary for Sylvester's generalization of New- 
ton's Complete Rule. Form the simple and quadratic elements for the new polynomial 
p(x +A)and write pP(A)for the total number of double permanences therein, and 
similarly for C v V (A).C pV (A),and C vP(A). 

Theorem 3.1 (Sylvester's generalization of Newton's Complete Rule). Let p and 
v be any two real numbers with p > v.Then 

where (v, p) denotes the total number of real roots of p(x) between v and p, counted 
with multiplicities, and k is some nonnegative integer. 

As a comment, recall that the graph of the polynomial p (x +p) can be thought of as 
the graph of p(x) shifted p units to the left. Similarly for p ( x  + v).Now as p exceeds 
v ,  p(x + p)will have at least as many negative real roots as p(x + v) ,  perhaps more. 
Sylvester's theorem quantifies how the change in double permanences for the simple 
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and quadratic sequences associated with these two polynomials is commensurate with 
the change in the nature of roots. Fourier's earlier result states that 

Thus, Fourier only considered the sign pattern of the simple elements, i.e., the pattern 
examined in Descartes's Rule. 

To illustrate Sylvester's theorem, consider the polynomial p(x)  = x% 2x2 +4x + 
1 .  We compute the associated sequence of signs formed from the simple elements and 
quadratic elements for the polynomials p(x + A). where h = -1, 0, and 2. 

h = - 1 .  ( C p P  = 0) h = 0 , ( C p P  = 1 )  h = 2, ( C p P  = 1) 

+ - + - + + + +  + + + +  
+ - + +  + - + +  + - - +  

According to Sylvester's theorem, with y = 0 and v = -1, we should gain as many 
double permanences as roots for p(x)  in (- 1,  O), or more by an even number. The 
pattern at h = -1 changes from no double permanences to one double permanence at 
h = 0, indicating that p(x) has only one root in (-1,O). (In fact, Newton's Complete 
Rule indicates that p(x)  has one negative root and two imaginary roots. The pattern 
for p(x) corresponds to h = 0.) There is also a change in pattern when considering 
,u = 2 and v = 0, but the number of double permanences doesn't change. 

As an additional example, let p(x)  = x4 + 2x3 + x2 + 2x + 3. The associated se- 
quences of signs for p(x + A) for several choices of h are shown. 

The polynomial p(x)  has four imaginary roots, and thus, by Sylvester's theorem, we 
expect to see the number of double permanences increase by even numbers only. For 
example, with p = 14 and v = -3, we see an increase of four double permanences. 

Corollary 3.2. Newton's Complete Rule is valid. 

ProoJ First, note that 

where 

This follows because expansion of p(x + h) produces 

For h sufficiently negative, the rth coefficient will carry the same sign as a, h r ,  thereby 
rendering C p P ( - m )  = 0, for the simple elements alternate in sign. (Alternatively, 
we could use Taylor's theorem to show that the coefficients of p(x + A) are just 
p(')(h).) Observe that C pP(0 )  corresponds to our original C p P .  By Sylvester's 
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theorem we have 

Finally, changing p ( x )  to p ( - x )  reverses the permanences and variations of the simple 
elements, thus yielding C v P ( 0 )  2 ( 0 ,  oo). 

4. SOME PRELIMINARIES. The content of Sylvester's theorem lies in comparing 
the associated sequences of simple and quadratic elements of the polynomials p ( x  + 
A) as h varies continuously over R.Given a polynomial p ( x ) ,  we first wish to find 
convenient expressions for the simple and quadratic elements of p(x  +A). Later in this 
section we use these expressions to classify the possible cases of simple or quadratic 
elements equaling zero. 

Recall that by Taylor's theorem we can expand p ( x )  about x = A: 

1 1 
p ( x )  = p ( h )  + p J ( h ) ( x- h )  + -pr ' (h ) (x  - hj2  + . . . + -p f " ' (h ) (x  - A)".

2 n !  

Replacing x with x + h then leads to 

The simple elements of p ( x  + h )  are therefore 

Multiplying each of these terms by the positive quantity n! simplifies these elements 
without changing either the roots or the permanences and variations: 

Forming the quadratic elements from this and afterwards simplifying each successive 
term by dividing by (2 ! )2 ,(3 ! )2 ,(4!) ' ,  . . . . respectively (recall that we're inter-
ested in the signs of these terms only), we arrive at 

where 

and 

with yk = ( n  - k + l ) / ( n  - k )  when 1 5 k 5 n - 1 
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Thus, the expressions (2), (3), and (4) for these simple and quadratic elements are 
polynomials (formed from the derivatives of our original p(x)) that are evaluated at h. 
By continuity there will be no change in sign of any particular simple or quadratic 
element as h changes, except perhaps when this element becomes zero. Suppose this 
happens at a particular A .  That is, suppose pIk)(h) (a simple element of the polynomial 
p(x +A)) or QL(A) (a quadratic element of p(x + A)) is zero. We organize the occur- 
rence of zeros into the following five cases by using (3) and (4), which describe how 
the quadratic elements are formed from the simple elements (note that pi"+') denotes 
p'k+l)(h) in what follows): 

a. An intermediate simple element becomes zero, without its two adjacent simple ele- 
ments becoming zero. The associated three quadratic elements are necessarily nonzero 
by (4). As part of the associated sequences of simple and quadratic elements at A (i.e., 
for the polynomial p(x + h)) we have the following pattern: 

b. An intermediate quadratic element becomes zero, without its two adjacent quadratic 
elements becoming zero. The three associated simple elements are nonzero by (4): and 
we see the following as part of the associated sequences: 

c. The last simple element becomes zero, perhaps preceded by several consecutive 
zero simple elements. This is the case when A is a root of any multiplicity i less than 
n.  Using (3) and (4) we see that the associated sequences of simple and quadratic 
elements end in the following manner: 

d. Several consecutive intermediate simple elements become zero at A ,  forcing the as- 
sociated quadratic elements to become zero as well. We observe the following pattern 
as part of our associated sequences: 

e. Several consecutive intermediate quadratic elements become zero at h ,  with all 
the associated simple elements still nonzero. Under this assumption, if one of these 
simple elements were to become zero at A ,  then the remaining simple elements would 
necessarily become zero as well. We described this situation in (d). As part of the 
sequences we find: 

No extra consideration is needed when several of these cases occur at the same A, 
for in all five of the cases Sylvester considered a zero element or a group of consecutive 
zero elements with their associated elements and nonzero adjacent elements, as shown 
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in (51, (6), (7), (8), and (9). Thus, we do not overcount the double permanences or 
variation permanences in one case because they do not appear in another concurrent 
case. 

Also, in the proof for each of these cases, Sylvester considered the general situation 
where zeros of the polynomial expressions that yield the simple and quadratic ele- 
ments upon evaluation are necessarily isolated. In section 6 of this article we discuss 
Sylvester's conclusion when some quadratic expressions vanish identically. 

5. SYLVESTER'S INGENIUS PROOF. Sylvester claimed (as in Theorem 3.1) that 
the associated sequences of signs for the polynomials p(x + p) and p(x + u) differed 
in a precise way (that enabled Sylvester to validate Newton's earlier work). In fact, the 
kth simple (quadratic) element for the polynomial p(x +p) will have the same sign 
as the corresponding kth element for p(x + u) unless perhaps this element becomes 
zero for the polynomial p(x + A), where p > A. > u.  Without loss of generality, let 
p = A. ++ and u = h - E ,  where t is small enough so that the polynomial expression 
(2) for the kth simple (quadratic (3)) element is zero in the interval (h - t. h ++)only 
at A. 

In this section we present identities Sylvester used to show how the change from 0 
(at h) to + or - (at A. + t )  is completely determined by the signs of the nonzero adjacent 
elements at h and the sign of 6 .  Amazingly, no other details from the polynomial p(x) 
are necessary. Then, we demonstrate how Sylvester used these identities in all of the 
cases (a) through (e) presented in section 4 to verify that the sequences of signs do 
indeed differ as prescribed in Theorem 3.1. 

Sylvester deduced the following identities from the presented expressions (2), (3), 
and (4) for the simple and quadratic elements, Taylor's theorem, and the continuity 
of polynomials. It is upon these relations that the analysis rests. In the derivations for 
identities three and four that follow, Sylvester used the fact that 2 - yk l / ~ k + ~ .= Also, 
note that the approximations have error terms that tend to zero by Taylor's Remain- 
der Theorem for polynomials (the remainder terms are o( t )  in identities (i) and (iii), 
o ( E ' )in identities (ii) and (iv)). Thus, the signs of the terms on either side of the ap- 
proximation symbol are necessarily the same when t is sufficiently small. Here are the 
approximations that Sylvester invoked: 

Case a. Suppose we witness the single vanishing of a simple element P (~ ) (A)  with 
k # 0 or n.  The quadratic elements in (10) are determined by the upper elements and 
thus we have only p ( h + l )  and p(k-l)  to assign freely a plus or minus sign. However, 
reversing all signs on top does not interchange a permanence and variation. Thus we 
actually have 2'12 = 2 possibilities for what happens at h .  The boxed terms will be 
used to compute the signs before and after h.  
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Observe that all signs in (10) must remain constant through the transition, except pos- 
sibly at the position occupied by the kth simple element. The corresponding signs for 
this position are deduced using identity (i), which says the sign of p("(h +E) is given 
by multiplying the sign of t and the boxed term. 

Before this occurrence of zero (i.e., at h - t )  we calculate the corresponding ele- 
ments to be: 

After the occurrence of zero (i.e., at h + 6 )  we calculate the corresponding elements 
to be: 

Thus, we see no net loss or gain of double permanences in proceeding from h - 6 to 
A f t i n R .  

Case b. Suppose we witness the single vanishing of a quadratic element Qk(h), 
where k differs from 0 and n. This zero element dictates by the definition of Qk that the 
outer simple elements necessarily be of the same sign and that we have four positions 
to assign freely either a + or -. However, as before we actually have only 24/4 = 4 
possibilities at h (in this case the lower signs aren't determined by the triple above 
them): 

The new sign corresponding to the kth quadratic position is deduced from identity (iii), 
which says this sign is obtained from the product of the boxed terms with the sign o f t .  

Before this occurrence of zero (i.e., at h - E) we calculate the corresponding ele- 
ments to be: 

After the occurrence of zero (i.e., at h + c ) we find that the corresponding elements 
are: 

Thus, we see no net gain or loss for the first, third, and fourth forms, and a gain of two 
double permanences in the second form. 

Case c. If h is a root of multiplicity i for p ( x ) ,  then the final i + 1 elements of the 
associated sequences at A, 
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become 

reducible to the single case 

At h - E we see 

and at h + e the form 

picking up i double permanences as we pass through a root of multiplicity i. The signs 
for the simple elements were computed using identity (ii), wherein the expression 
~ ' - ~ ~ ( ' ) ( h ) / ( i- k)! dictates that the sign comes from E ' - ~ ,  which produces simple 
variations before transit (E is negative) and simple permanences after transit (E is pos- 
itive). Already then we see that no double permanences occur at h - e. As for the 
quadratic elements, note that Q; (x) is positive throughout the transition by continuity, 
and Qo(x) is positive at h - E and h + E because it is determined by the simple ele- 
ment above it by (3). A straightforward analysis using (4) shows that the intermediate 
quadratic elements remain positive throughout transit. 

In summary, as we increase the parameter h, the number of double permanences in 
the associated sequences of simple and quadratic elements increases by the number of 
real roots passed over, each counted with multiplicity, and any increase beyond that 
is given by an even integer. The remaining cases, cases (d) and (e), feature multiple 
terms vanishing concurrently. Sylvester mentioned that a small perturbation of the 
coefficients would change these singular cases to the generic one, while leaving the 
nature of the roots unaltered. However, a possible exception involves the passing of 
real roots to an imaginary pair, and rather than deal with this subtlety, he handled the 
singular cases as we have indicated. The conclusion still holds. 

6. COMMENTS ON ZERO TERMS, SIMPLE AND QUADRATIC. In Sylves- 
ter's paper, there is no assignment of plus or minus signs when simple or quadratic 
elements for p(x +A) become zero. In fact the zero elements, all isolated occurences, 
mark potential transitions in sign, and counting double permanences at these transition 
points is unimportant. However, the initial polynomial p(x), corresponding to h = 0, 
should have sequences of signs if we wish to apply Newton's Rules. As is, Sylvester's 
theorem and Newton's Rules apply to polynomials p(x) such that the associated sim- 
ple and quadratic expressions, themselves polynomials, contain only isolated zeros and 
such that the initial simple and quadratic elements for p(x) (A = 0) are all nonzero. 

However, Newton originally provided some ad hoc rules for the assignment of plus 
and minus signs to zero quadratic elements. Sylvester did not address these rules, but 
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we now observe that the full strength of Sylvester's conclusion holds when we apply 
these rules to polynomials that contain identically zero quadratic expressions (simple 
expressions are never identically zero) or polynomials with zeros among the initial 
simple or quadratic elements. For brevity's sake we omit the proofs of these rules, but 
we remark that the arguments closely parallel those of Sylvester that we have presented 
earlier. 

Rule A: Signs for the zeros of cases (a) and (b) (Newton). Assign any lone inter- 
mediate zero quadratic element the sign of - and any lone intermediate zero simple 
element arbitrary sign. Arguing as in the proof of Sylvester's theorem for cases (a) and 
(b), we learn that 

holds; a similar fact emerges when comparing 1p P(A)and C p P(A - E ) . Moreover, 
we can also show that this assignment of signs forces the counts C v P and 1p P to 
swap under the transformation x H - x ,  as required in the proof of Newton's Com- 
plete Rule (Corollary 3.2). 

Rule B: Signs for the zeros of cases (d) and (e) (Newton). If consecutive interme- 
diate zeros occur in the quadratic sequence due to simple zeros overhead (e.g., there 
are missing terms in the polynomial, i.e., we are in case (d) with h = 0), assign con- 
secutive quadratic zero elements alternately - and +,beginning with the former, and 
in addition assign a + to the final zero element if the simple elements adjacent to 
the group of zeros are of opposite signs. Once this is done, we assign an alternating 
pattern to the zero simple elements, beginning with sign opposite that of the preceed- 
ing nonzero element. Once again, we can show that Sylvester's conclusion holds and 
that the counts C v P and C pP are interchanged under the involution x w - x .  We 
follow the same rule in the case of consecutive intermediate zeros in the quadratic se- 
quence without simple zeros overhead (i.e., case (e)), but note that in this case simple 
elements must either agree in sign or form an alternating pattern, meaning that the 
proviso of reassigning a + to the final zero element slated for a - will never apply. 

Rule C: Signs for identically zero quadratic elements. Suppose p(x)  possesses 
identically zero quadratic expressions Qi (Qi(h) = 0 for all A), with Qk the last such 
term. We can show that this implies the existence of a sequence of consecutive identi- 
cally zero quadratic expressions, beginning with Q,,-, and ending with Qk,  and more- 
over that 

for some polynomial q ( x ) of degree k - 2. We assign the consecutive vanishing ele- 
ments through Qk the alternating pattern - + - + - + . . . , once again ending with 
+ if the simple elements bordering the zero elements are of opposite sign. We examine 
the associated elements 

and study in particular the transition through h = a, i.e., the only value for which both 
p ( k - ~ j  = 0 ,  nd QkPl  = 0, as seen by computing p(k- ' )  and Qk-1 directly from (11). 
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As in Rule B, we assign the consecutive quadratic zeros an alternating pattern, ending 
with + if the simple elements bordering the zero elements are of opposite sign. The 
consecutive simple zeros at x = a are also assigned an alternating pattern, beginning 
with the sign opposite that of the preceeding element (the leading coefficient of p(x)). 
Once again, we can show Sylvester's conclusion holds when comparing Cp P(0) and 
C p P (a), and when comparing C p P (a) and C p P (a + r). (If a were negative, we 
would consider C p P(a- r)instead of C p P (a + r).) Also, the counts C v P and 
C p P swap under the involution x H -x. 

We note that in applying Newton's Rules the reader will not know whether a string 
of consecutive zero quadratic elements beginning with Q,-* is the result of identically 
zero quadratic expressions, thus requiring Rule C, or merely isolated zeros of quadratic 
expressions that are not identically zero, when Rule B applies. But, because Rules B 
and C assign + and - signs in an identical manner, the distinction is unnecessary in 
practice. However, separate proofs are required for these two different situations. 

In conclusion, Sylvester's theorem-and therefore Newton's Incomplete and Com- 
plete Rules-holds for all polynomials p(x) such that p(x)has a nonzero constant 
term and p(x)# (x- a)".There is not much loss in generality in these two excep- 
tions. In the former case, which corresponds to case (c) with h = 0,we can rewrite 
p(x)= and apply Sylvester's theorem to p̂ (x). =xlp^(x) In the latter instance, p(x) 
(x- a)"is easily recognized in its expansion. In fact, this situation arises if and only 
if all intermediate quadratic expressions are identically zero. Complete knowledge of 
the nature of the roots of such a polynomial is immediate. 

7. EXAMPLES OF SPECIAL CASES. 

1. p(x)= x5- 2x - 1. In the associated sequences of simple and quadratic ele- 
ments, the circled signs indicate zero elements that were assigned a plus or minus in 
accordance with the ad hoc rules given in section 6. Here we use Rule B to compute 

indicating one positive root, two negative roots, and two imaginary roots-an accurate 
prediction for this polynomial. 

2. p(x)= (x- 2)5- 2x + 3 = x5 - lox4 + 40x3- 80x2+ 78x - 29.The asso- 
ciated sequences of simple and quadratic terms (Rule C)is 

indicating three positive roots, no negative roots, and two imaginary roots, which again 
represents an accurate profile of the roots of this polynomial. 

3. p(x)= (X- 2)6 + 3x2 - 2x + 1 = x6 - 12x5f 60x4- 160x3+ 243x2-
194x + 65.The associated sequences of simple and quadratic terms (Rule C)is 

indicating six imaginary roots. Once more this accurately predicts the distribution of 
roots. 
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