SOME REMARKABLE PROPERTIES OF SINC AND RELATED INTEGRALS

DAviD BORWEIN AND JONATHAN M. BORWEIN
ABSTRACT. Using Fourier transform techniques, we establish inequalities for integrals of the form
oo n .
sin(agx
/ H sin(axz) dz.
JO k=1 z

We then give quite striking closed form evaluations of such integrals and finish by discussing various
extensions and applications.

1. Introduction. Motivated by questions about the integral®

(1) W= ./Oooklo:ollcos (%) dz,

we study the behaviour of integrals of the form

X sin(agx)
——dz.
[ I as
k=1

In Section 2 we use Fourier transform theory to establish monotonicity properties of these integrals
as functions of the parameters. In Section 3, by direct methods, we give closed forms for these
integrals and for similar integrals also incorporating cosine terms. In Section 4, we provide a very
different proof of one of these results following an idea in an 1885 paper of Stérmer [2]. Finally,
in Section 5 we return to the study of (1).

2. Fourier cosine transforms and sinc integrals. Define

sinz
sinc(z) := ,
T
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and
1 if0<z<a
Xa(z):=4 3 ifz=a
0 ifz>a.

We first state some standard results about the Fourier cosine transform (FCT) which may be
found in texts such as [4, ch. 13]. The FCT of a given function f € L,(0, 00) is defined to be the
function F' that is the Ly-limit as y — oo of

cy(z) := \/g/oy f(t) cos(xt) dt, i.e. /000 ey(r) — F(x)*dr — 0 as y — oc.

This function F' exists, is unique apart from sets of zero Lebesgue measure, F' € Ly(0,00) and f

is the FCT of F'. In addition, if f is continuous on [0, o] for some a > 0 and F' € L;(0,c0), then

\/2/00 F(x) cos(xt) dx = f(t) for 0 <t < a,
T Jo

since the left-hand term is also continuous on [0, @] by dominated convergence. Note that, for

2 2
a >0, the FCT of x, is a4/ —sinc(az), so that the FCT of a\/jsinc(am) is xq. Note also that if
m ™

2
Fy, Fy are FCTs of functions fi, fo € L2(0,00), then F1 Fy is the FCT of 4/ = f1 * f2, where
iy

f1 % fo(z) ::/0 fi(x —1t) f2(t) dt for z > 0.

In addition, we have the following version of Parseval’s theorem:

| f@n@i= [ @k,
0 0
provided at least one of the functions fi, fo is real.

We are now in a position to prove:

n
Theorem 1. Suppose that {a,} is a sequence of positive numbers. Let s, = Zak, and T, :=
k=2

/ Hsinc(akaz)daz.
0 k=1

)< 1) < 1
(1127

with equality if n = 1, or if a; > s, when n > 2
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(i) If a1 < sp, with ng > 2, then
1x
0 < Tht1 < T < Ty < 32 for n > ng.
ay

o0
(iil) If a1 < sp, with ng > 2, and Zai < oo, then
k=1

oo 00
T > / H sinc?(agz) dz > 0 for n > ny.
0 k=1

1
Proof. Part (i). That 1 = —g is a standard result (proven e.g., by contour integration in [1,
a

p. 157] and by Fourier analysis in [3, p. 563]) with the integral in question being improper (i.e.
not absolutely convergent the integrals in the other cases are absolutely convergent). Assume
therefore that n > 2, and let

n—2
1 2 1
Fy = — zxal, F, = — fox fs - x f, where f, = — ZX%-
a1\ 2 s an \ 2

Then it is readily verified by induction that F,, vanishes on (s,,o0) and is positive and absolutely
continuous on (0, s,,). Also

F, is the FCT of o, (z H sinc(agx), and oy, is the FCT of F,.
k=2

Thus, all our functions and transforms are in L; (0, 00) N L2(0,00). Hence, by the above version
of Parseval’s theorem,

oo 1 pon min(s,,a1)
(2) T = / F,(z)F(z)dx = —\/j/ F,(x)dx.
0 ap \ 2,

When a; > s,, the final term is equal to —1/ \/7 = — — since o, (z) is continuous on

™

[0,00); and when a; < s,, the term is positive and less than —5 since F,(z) is positive and
a

continuous for 0 < x < s,. This establishes part (i).

2
Part (ii). Observe that F, ;1 = \/ n * fni1, and hence that, for y > y; > 0,

/0. e ( daz—\/7/ da:/ (t) frg1 (z — 1) dt
:\/;/0 Fn(t)dt/t fosi(@—t)de = I + T,
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Y1 y—t
I = \/g/(] F,(t) dt/0 frnt1(u) du and
92 Y y—t
I = \/;/y1 F,(t)dt ./0 frnt1(u) du.

Suppose now that 0 < y < s, and 0 <y —y; < %anﬂ. Since

1
/ frt1(u)du < = ,/2 when 0 < v < §an+1’ and
/fn+1 du<\/7when0<v

Y1 1 Y
0 Y

where

we see that

and hence that
y y

(3) / Fopi(z)dx < / F,(z)dz when 0 < y < s,,.
0 0

It follows from (2), and (3) with y = ay, that 0 < 7,41 < 7, whenever a1 < s,, and this establishes
part (ii).

oo

Part (iii). Let 0?(z) := lim o2 () H sinc?(agz) for x > 0. Observe that the limit exists since
n—oo
k=1

0 < sinc®(arr) < 1, and that there is a set A differing from (0, o0c) by a countable set such that
0 < sinc?(arr) < 1 whenever € A and k =1,2,... . Now

.9 6k .’E2

sinc”(arr) = 1 — 6, where 0 < < — 3 3 k — oo,

ay

o0

so that 25’“ < oo, and hence, by standard theory of infinite products, o(z) > 0 for z € A. It

Tn>/ ai(m)dmZ/ o?(z)dz > 0,
Jo 0

by part (ii). O

follows that, for n > ng,

Observe that applying this result to different permutations of the parameters exposes different
inequalities. Also, part (iii) and dominated convergence imply that, subject to the hypotheses of

part (iii),
/ H sinc(az) dx > / H sinc?(ayx) dz
J0 —1
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3. Some elementary identities. In this section we prove some identities involving products of
sines and cosines by straightforward methods not involving Fourier transform theory. We adopt
the usual convention that empty sums have the value 0 and empty products have the value 1.

Theorem 2. Let ay,as,...,a,, be given complex numbers.
(i) Then
n 1 gn—1 x
H sin(apz) = T Z €}, COS (bkaz — 511) ,
k=1 k=1
where

n n
bk :Z’Yjaj,’yl = 177] == :b]-;Ek — H’Yk ::I:]-/

=1 k=1
and
gn—1 0, forr=1,2,... ,n-2,
Z Fkbz = 2n71 1)! - B 1
k=1 (n— )'Hak= forr=n-—1.
k=2

(ii) If the ai's are real, then

271—1

o Sin(akgg) T 1 L
7(1 - - @@ : b b '
/0 kl;[l T v 2201 (n—1)! kz €10y, sign(by)

=1

If, in addition,

n
a2 akl,
k=2
then

o 2 Sin(akm) s n
" dr = ] -
[ ISl

k=1

Proof. We prove part (i) by induction, observing that it is true for the case n = 1. Suppose that
(i) holds for a certain positive integer n, and that a,11 is an arbitrary complex number. Then

n+1 gn—1
2" [ sin(arz) =2 ) €4 cos (bkm - gn) sin(a, 1)
k=1 k=1
2’"71
) ; . {COS ((bk ang)T - g(” + 1)) o8 ((bk — n41)T — g(ﬂ + 1))}
on

— C;GCOS(;Cw—g(n—k])):
k=1
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where, for k =1,2,...,2"1,

€} 1= €, 6'k+2",1 = —eg, bf, == bg + any, b'k+2",1 =br — apt1-
Hence, forr =1,2,... ,n,
2" 2m !
o) =" e {bx +ani1)" — (br — ant1)"}
k=1 k=1
271.—1
=X ax ()t o
k=1  j=0
r—1 2Vt '
=Y () A Y
j=0 k=1
By the inductive hypothesis this is 0 for r =1,2,... ;n — 1, and for r = n it is equal to
gn—1 n+1

1
2nan, 41 E exby = 2"n! H ag
k=1 k=2

as desired. Part (i) of the theorem is thus established by induction with the value of €, as stated.

To prove part (ii) of the theorem, observe that

< 2 sin(agx) 1 e
(4) / dr = / x "Cp(z) dz.
0 k[[l T 2n=1 o
2n71
iy . . .
where C), () := Z €), COS (bkCU — 511) . Because C),(z) is an entire function, bounded for all
k=1

real z, with a zero of order n at = 0, we can integrate the right-hand side of (4) by parts n — 1
times to get

n—1
oo Ll sin(ak:ﬂ)d dﬂfz b sin(b
1_[7'77 r = 2”1n—1 Zek sin(byx)
0 k=1
gn—t in(byz)
_ n_1 sin(byx
_2n1n71|26kb / 7'7: dx
by 1 2 n_1
= Em Z Ekb Slgl’l(bk)

Since the additional hypothesis implies that by > 0 for k = 1,2,...,2" !, the final formula in the
theorem follows from part (i). O
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Corollary 1. If 2a; > a, >0 for k=1,2,... ,n—1 and

n n—1
E ap > a; > E ay,
k=2 k=2

then
r
/ HsmakT gHakforrzl,Q,...,nfl,
k=1 k=2
while
/OOﬁ sin(akT _ z Hak— (l2+a3+-‘..+an*a1)n71 -
0 T 2 2n=2(p —1)!
k=1
Proof. Observe that
bon-1:=a; —ag — -+ —a, < 050 that €yn—1 = (—1)"71,

and that all other by's are non-negative. It follows that

2n—1

oc N Sin(akw) . T 1 L
/0 H T = 227 1(np — 1)! Z exby sign(by)
k=1 P
1 !

T n—1 n—1 .

— 527171(” 1! 2 €xb,  +€an—1by. (51gn(b2n,1) — 1)
™ n 2(,[)2“71)71 1

_5{]}_[2 k— 2n71(n 1)| I

as desired.

Remarks 1. (a) If all the a’s are real and nonzero, then, by Theorem 2(ii),

n 2n71
o . ™ 1 o1 .
" / [] sinc(axe) do = 227 1(n — 1)lajaz - -a > exby 'sign(b)
0 k=1 : " k=1
1 2n71
m
22 (p —1layaz - -ay Z * ! bz<0 * ienlt =)
k

7T 2
= — 1-— - bn71 )
204 { on—1 (n — 1)!a2a3 cap, Z €L 0y, }

br <0
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(b) Suppose further that the a;'s are positive. Consider the polyhedron P(n) given by

n
P(a1:a2:"' :an) = {(332,.’173,"' 7wn):zak Sahoka Sak,2§k§n}
k=2

If we return to equation (2) we may observe that

s 1

min(s,,a1)
Tp = g———— Xas * Xas ¥ ** % Xa, dT =
2a1 azaz---an Jy

7w Vol(P(n))

2a1 G2 Q3 - Ay,

Thus, in (a) we have evaluated the volume of P(n). Moreover, we now explain the behaviour of
n

T, when we note that the value drops precisely when the constraint ka < a; becomes active

and bites into the hypercube {(z2,z3, - ,2,) : 0 <z < ag,2<k §];1:}2.

(c) Consider now the special case

o0
Tn = ln = / sinc™(x) dz.
0

In this case we have a; = 1 for all k, and it is straightforward to verify that

S = 5 Corn (0 oo

b <0 1<r<2
and hence that
T 2 n—1
n i=— 1— r+1 9 n—1
Hn =% 9n—1(n 1! (=1) <r1>(" )
1<r<2

1 —1) -9 n—1

_nliy L (1) (0= 20

2 2 14r2n (r=1!" (n—r)

(I
The next theorem extends Theorem 2 by adjoining cosines to the product of sines.
Theorem 3. Let aj,as,...,antm, be given complex numbers, m,n being non-negative integers
with n > 1.
(i) Then

n n+m gntm—1
(kl:[l sin(mﬂ)) ( H COS(CLk-’L‘)> = W% Z €} COS (bk:z; — gn) 7

k=n+1 k=1
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where
n+m n+m
b= viajn =17 =%l = [ w==+1,
j=1 k=1
and
gntm—1 0, forr=1,2,... . n—2,
Z exby = gntm=1(p _ 1)| - f —n_1
Pt n .kllak, orr=n .

(ii) If the ay's are real, then

n

> sin(agx) ntm
/0 HT H cos(agz) | dx

k=1 k=n+1
1 2n+m71
T 1 .
— 5—2n+m71(n 1 Z exby sign(by)
) k=1

If, in addition,

n+m

ay 2 E ‘ak‘7
k=2
then

< [ sin(a) el T
/ H — H cos(apz) | der = 3 H ay.
0 ) k=2

k=1 k=n+1

Proof. By Theorem 2 we have that

n+m 1 gntm-—1 .
H sin(apz) = ST Z €}, COS (bkm — E(n + m)) ,
k=1 k=1
where
n+m n+m
bk = Z ’Yja’]':’yl - 177] = :I:lzellc = H Yk = :t17
j=1 k=1
and
grbm—1 0, forr=1,2,... ,n4+m — 2,
S i -
n+m—1 _ | — _
= 2 (n+m 1).Hak, forr=n+m-1.
k=2
Differentiating these expressions partially with respect to an41,@nt2,. .. ,@ntm yields part (i) of

Theorem 3 with e, = y™¢}.. To deal with part (ii) of Theorem 3 we observe that, by Theorem 2,
if the ay's are real, then

2n+m—1

oo n+m .
sin(apa) | ow 1
[ Iy X )
0 k=1 k=1
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Differentiating partially with respect to a,+1,ant2,. .- 5 Gppm, We get
o) n n+m
sin(ayz
/ (H k )(Hcosa;@)dm
0 k=1 * k=n+1
1 o
_ ™ n—1 -
§m ; Ekbk Slgn(bk).
If, in addition,
n+m
ay 2 Z ‘ak‘7
k=2
then, by Theorem 2,
oonﬁn sin(ayx) 4 v nﬁn
———dr = — ag.
Jo x 2 k
k=1 k=2
Differentiating partially with respect to ap41,n+2,--- , Gntm, We get
< ({5 sin(agz) Rl T
sin(ag )
cos(agz) | do = = ag. O
k=1 k=n+1 k=2

Corollary 2. If 2a; > apym >0 for k=1,2,... . n+m —1 and

n+m n+m-—1

Z ap > ay > Z ay,
k=2 k=2

then +
/ (H sin(ax > ( H cos akr) dm:gHak forr=1,2,...,n—1,
k=1 k=r+1 k=2
while n
/ (H ak’E ) ( H cos akr> dz
k=1 k=n+1

m i (a2+a3+---+an+m+1 —al)”’l
2 {IEG’“ gntm—2(p — 1)! '

Proof. The first part follows immediately from Theorem 3, and the second part can be de-
rived from Corollary 1 with n + m in place of n by differentiating partially with respect to
Qpt1,Apg2y - - - 5 Gptm, as above. O
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4. An alternative proof. The next theorem is a restatement of the last part of Theorem 3
restricted to real numbers. It appears as an example without proof in [5, p. 122] where it is

ascribed to Carl Stormer [2]. Stormer’s article does not contain the integral in question, but his
proof for the series identity

2(71)7“4“1 (H Smgﬂﬂ) H cos(re;) | = % H ag,

r=1 k=1 k=1

n m
provided Z lax| + Z lej| <,
k=1 j=1

is readily adapted to yield a proof of the theorem which is radically different from the proof of
Theorem 3.

Theorem 4. Ifa,ay,as,...,0,,C1,C2,-.. ,Cn, are real numbers with
n m
a>Y |+ o),
k=1 j=1

then

(5) /00 ( M) H cos(c;x) sinia:n) dr = g H ag.
0 ’ j=1 - k=1

k=1

Proof. We prove the theorem by induction. Applying as before the convention that empty sums
have the value 0 and empty products have the value 1, we observe that formula (5) for the case
n = m = 0 reduces to the standard result

/ sin(az) dr = il when a > 0.
0 T 2

Formula (5) also holds for the case n = 1,m = 0, by the case n = 2 of Theorem 1 (which can
easily be proved directly).

Assume that the theorem holds for certain integers n > 1 and m > 0. First suppose that

m+1

n
a> Z la| + Z el
k=1 j=1

Then

n m
a > |a1 :|:Cm+1‘ + Z |ak| + Z |Cj|=
k=2 j=1
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and hence

/ sin(a; irm+1 (H n(agx > Hcos(cjm) sin(ax) I
Jo bl . x

]:
. n
= E(al :i:Cm+1) H ag .

Adding the two identities in (6), we immediately obtain

o (I sin(apx il sin(ax
(7) /0 (H %) H cos(c;x i ) dx =

k=1

|3
=
5

Next suppose that
n+1

a> ZI%HZI%I

and let ¢ lie between 0 and a,41. Then, by (7), we have

(8) / H sin(axr) H cos(c;jx) cos(tm)M dr =T H ay,.
0 bt T =1 T 2
Now integrate (8) with respect to ¢t from 0 to a,+1 to get

o (Mt Gin(apx - sin(ax s
(9) /0 (H %) li[lcos(cjm) :(13 ) de = 3 kli[ ap,

k=1

Identities (7) and (9) show that if the theorem holds for a pair of integers n, m with n > 1,m > 0,
then it also holds for the pairs n,m + 1 and n + 1, m. Since it holds for n = 1, m = 0, the proof is
completed by induction. O

Remarks 2. Parts of our previous theorems do, of course, overlap with Theorem 4, but this
latter theorem does not deal with cases where the identity in (4) fails, whereas the other theorems
do. Thus, for example,

/ sinc(z) dz = z,
0 2

e T ™
sinc(z)sinc ( = | dx = —,
/0 (3) 2

/0Oo sinc(z)sinc (g) -+ - sinc (1:6—3) dz = g,



SINC INTEGRALS 13
yet

/0 sinc(z)sinc (z) -sinc (15) dx

467807924713440738696537864469
~ 935615849440640907310521750000

(10)

and this fraction in (10), in accord with Corollary 1, is approximately equal to 0.499999999992646.
When this fact was recently verified by a researcher using a computer algebra package, he con-
cluded that there must be a “bug” in the software. Not so. In the above example, 3 1 +z Ly 1]3

1, but with the addition of , the sum exceeds 1 and the identity no longer holds ThlS is a some-
What cautionary example for too enthusiastically inferring patterns from symbolic or numerical
computation. (I

5. An infinite product of cosines. We return to the integral, which we denote by u, in (1).

Let
a xr
= H COS (—) .
n
n=1

Recall Vieta’s formula [3, p. 419] in the form

sinc(z) = Ecos (2%) ;

and relatedly the product expansion

sinc(mz) 1:[ <1 —> :

We may thus re-express C' as the absolutely convergent product:

(11) C(z) = f[osinc (2133; 1)

and apply Theorem 1 to obtain

N
o0 [e.e] 2
O<,u:/0 C'(.’I:)d.r:1\}i_r>nOo ; Hsin(:(%—il) dx <Z'
: k=1

These sinc integrals are essentially those of the previous Remarks. Note that all parts of Theorem
o

. 1 1

1 apply since k_g ‘ m <0 = ké_l 2% 1
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We observe that Theorem 1 allows for reasonable lower bounds on p. Indeed, as cos> z > 1—22 > 0
for 0 < # < 1, we see  using the product form for sinc  that C?(z) > sinc(mwz) on the same
range. Hence, by Theorem 1(iii),

1 s
Z > > 02 ydr > = / sinc(z) do ~ .5894898721.
™ Jo

We could produce a better lower bound, and indeed lower bounds for our more general sinc
integrals in the same way.

In fact o
/ C(z) dx ~ 0.785380557298632873492583011467332524761
0

while 7 ~ .785398 only differs in the fifth significant place. We note that high precision numerical
evaluation of these highly oscillatory integrals is by no means straightforward.

We finish by recording without details that (11) allows us to obtain the Taylor series around 0 for
log C. Tt is

x 4k -1 2
IOgC Z C )ZEZk,

k=1

with radius of convergence m/2. This in turn shows that the coefficient of z*" in the Taylor series
for C, say ¢,, is a rational multiple of 72* and is explicitly given by the recursion

1 k C2(2k)
Cp 1= - E (4 1) 5% Cn—k
k=1
Thus
1 11 233 1429
; :17_ _4.477 6.6 78'8 .9'
(=) 5™ Y @™ " saaza00” ° T 30as192006" ° T O )

Thanks are due to David Bailey, Richard Crandall, Greg Fee and Frank Stegner for very useful
discussions.
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