
SOME REMARKABLE PROPERTIES OF SINC AND RELATED INTEGRALSDavid Borwein and Jonathan M. BorweinAbstra
t. Using Fourier transform te
hniques, we establish inequalities for integrals of the formZ 10 nYk=1 sin(akx)x dx:We then give quite striking 
losed form evaluations of su
h integrals and �nish by dis
ussing variousextensions and appli
ations.1. Introdu
tion. Motivated by questions about the integral1(1) � := Z 10 1Yk=1 
os�xk� dx;we study the behaviour of integrals of the formZ 10 nYk=1 sin(akx)x dx:In Se
tion 2 we use Fourier transform theory to establish monotoni
ity properties of these integralsas fun
tions of the parameters. In Se
tion 3, by dire
t methods, we give 
losed forms for theseintegrals and for similar integrals also in
orporating 
osine terms. In Se
tion 4, we provide a verydi�erent proof of one of these results following an idea in an 1885 paper of St�ormer [2℄. Finally,in Se
tion 5 we return to the study of (1).2. Fourier 
osine transforms and sin
 integrals. De�nesin
(x) := sinxx ;This resear
h was supported in part by the Natural S
ien
es and Engineering Resear
h Coun
il of Canada.1991 Mathemati
s Subje
t Classi�
ation. 42A99; 42A38.Key words and phrases. sin
 integrals, Fourier transforms, 
onvolution, Parseval's theorem.1Through J. Selfridge and R. Crandall we learned that B. Mares dis
overed, and proved that � < �=4.Typeset by AMS-TEX1



2 DAVID BORWEIN AND JONATHAN M. BORWEINand �a(x) := 8><>: 1 if 0 � x < a12 if x = a0 if x > a:We �rst state some standard results about the Fourier 
osine transform (FCT) whi
h may befound in texts su
h as [4, 
h. 13℄. The FCT of a given fun
tion f 2 L2(0;1) is de�ned to be thefun
tion F that is the L2-limit as y !1 of
y(x) :=r 2� Z y0 f(t) 
os(xt) dt; i.e. Z 10 j
y(x) � F (x)j2 dx! 0 as y !1:This fun
tion F exists, is unique apart from sets of zero Lebesgue measure, F 2 L2(0;1) and fis the FCT of F . In addition, if f is 
ontinuous on [0; �℄ for some � > 0 and F 2 L1(0;1); thenr 2� Z 10 F (x) 
os(xt) dx = f(t) for 0 � t � �;sin
e the left-hand term is also 
ontinuous on [0; �℄ by dominated 
onvergen
e. Note that, fora > 0; the FCT of �a is ar 2� sin
(ax); so that the FCT of ar 2� sin
(ax) is �a: Note also that ifF1; F2 are FCTs of fun
tions f1; f2 2 L2(0;1); then F1F2 is the FCT of r 2� f1 � f2; wheref1 � f2(x) := Z x0 f1(x� t)f2(t) dt for x � 0:In addition, we have the following version of Parseval's theorem:Z 10 f1(x)f2(x) dx = Z 10 F1(x)F2(x) dx;provided at least one of the fun
tions f1; f2 is real.We are now in a position to prove:Theorem 1. Suppose that fang is a sequen
e of positive numbers. Let sn := nXk=2 ak; and �n :=Z 10 nYk=1 sin
(akx) dx:(i) Then 0 < �n � 1a1 �2 ;with equality if n = 1; or if a1 � sn when n � 2:



SINC INTEGRALS 3(ii) If a1 < sn0 with n0 � 2; then0 < �n+1 < �n < �n0 < 1a1 �2 for n > n0:(iii) If a1 < sn0 with n0 � 2; and 1Xk=1 a2k <1; then�n > Z 10 1Yk=1 sin
2(akx) dx > 0 for n > n0:Proof. Part (i). That �1 = 1a1 �2 is a standard result (proven e.g., by 
ontour integration in [1,p. 157℄ and by Fourier analysis in [3, p. 563℄) with the integral in question being improper (i.e.not absolutely 
onvergent|the integrals in the other 
ases are absolutely 
onvergent). Assumetherefore that n � 2; and letF1 := 1a1r�2�a1 ; Fn :=  r 2�!n�2 f2 � f3 � � � � � fn; where fn := 1anr�2�an :Then it is readily veri�ed by indu
tion that Fn vanishes on (sn;1) and is positive and absolutely
ontinuous on (0; sn): AlsoFn is the FCT of �n(x) := nYk=2 sin
(akx); and �n is the FCT of Fn:Thus, all our fun
tions and transforms are in L1(0;1) \ L2(0;1). Hen
e, by the above versionof Parseval's theorem,(2) �n = Z 10 Fn(x)F1(x) dx = 1a1r�2 Z min(sn;a1)0 Fn(x) dx:When a1 � sn; the �nal term is equal to 1a1r�2r�2�n(0) = 1a1 �2 sin
e �n(x) is 
ontinuous on[0;1); and when a1 < sn; the term is positive and less than 1a1 �2 sin
e Fn(x) is positive and
ontinuous for 0 < x < sn: This establishes part (i).Part (ii). Observe that Fn+1 =r 2�Fn � fn+1; and hen
e that, for y > y1 > 0;Z y0 Fn+1(x) dx =r 2� Z y0 dx Z x0 Fn(t)fn+1(x� t) dt=r 2� Z y0 Fn(t) dt Z yt fn+1(x� t) dx = I1 + I2;



4 DAVID BORWEIN AND JONATHAN M. BORWEINwhere I1 :=r 2� Z y10 Fn(t) dt Z y�t0 fn+1(u) du andI2 :=r 2� Z yy1 Fn(t) dt Z y�t0 fn+1(u) du:Suppose now that 0 < y � sn and 0 < y � y1 < 12an+1: Sin
eZ v0 fn+1(u) du < 12r�2 when 0 < v < 12an+1; andZ v0 fn+1(u) du �r�2 when 0 < v;we see that I1 � Z y10 Fn(t) dt and 0 < I2 � 12 Z yy1 Fn(t) dt;and hen
e that(3) Z y0 Fn+1(x) dx < Z y0 Fn(x) dx when 0 < y < sn:It follows from (2), and (3) with y = a1; that 0 < �n+1 < �n whenever a1 < sn; and this establishespart (ii).Part (iii). Let �2(x) := limn!1 �2n(x) = 1Yk=1 sin
2(akx) for x > 0: Observe that the limit exists sin
e0 � sin
2(akx) < 1; and that there is a set A di�ering from (0;1) by a 
ountable set su
h that0 < sin
2(akx) < 1 whenever x 2 A and k = 1; 2; : : : : Nowsin
2(akx) = 1� Æk; where 0 � Æka2k ! x23 as k !1;so that 1Xk=1 Æk < 1; and hen
e, by standard theory of in�nite produ
ts, �(x) > 0 for x 2 A: Itfollows that, for n � n0; �n > Z 10 �2n(x) dx � Z 10 �2(x) dx > 0;by part (ii). �Observe that applying this result to di�erent permutations of the parameters exposes di�erentinequalities. Also, part (iii) and dominated 
onvergen
e imply that, subje
t to the hypotheses ofpart (iii), Z 10 1Yk=1 sin
(akx) dx � Z 10 1Yk=1 sin
2(akx) dx:



SINC INTEGRALS 53. Some elementary identities. In this se
tion we prove some identities involving produ
ts ofsines and 
osines by straightforward methods not involving Fourier transform theory. We adoptthe usual 
onvention that empty sums have the value 0 and empty produ
ts have the value 1:Theorem 2. Let a1; a2; : : : ; an; be given 
omplex numbers.(i) Then nYk=1 sin(akx) = 12n�1 2n�1Xk=1 �k 
os�bkx� �2n� ;where bk = nXj=1 
jaj ; 
1 = 1; 
j = �1; �k = nYk=1 
k = �1;and 2n�1Xk=1 �kbrk =8><>: 0; for r = 1; 2; : : : ; n� 2,2n�1(n� 1)! nYk=2 ak; for r = n� 1:(ii) If the ak 0s are real, thenZ 10 nYk=1 sin(akx)x dx = �2 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k sign(bk):If, in addition, a1 � nXk=2 jakj;then Z 10 nYk=1 sin(akx)x dx = �2 nYk=2 ak:Proof. We prove part (i) by indu
tion, observing that it is true for the 
ase n = 1: Suppose that(i) holds for a 
ertain positive integer n; and that an+1 is an arbitrary 
omplex number. Then2n n+1Yk=1 sin(akx) = 2 2n�1Xk=1 �k 
os�bkx� �2n� sin(an+1x)= 2n�1Xk=1 �k n
os�(bk + an+1)x� �2 (n+ 1)�� 
os�(bk � an+1)x� �2 (n+ 1)�o= 2nXk=1 �0k 
os�b0kx� �2 (n+ 1)� ;



6 DAVID BORWEIN AND JONATHAN M. BORWEINwhere, for k = 1; 2; : : : ; 2n�1;�0k := �k; �0k+2n�1 := ��k; b0k := bk + an+1; b0k+2n�1 := bk � an+1:Hen
e, for r = 1; 2; : : : ; n;2nXk=1 �0k(b0k)r = 2n�1Xk=1 �k f(bk + an+1)r � (bk � an+1)rg= 2n�1Xk=1 �k rXj=0�rj��1� (�1)r�j	 bjkar�jn+1= r�1Xj=0�rj��1� (�1)r�j	 ar�jn+1 2N�1Xk=1 �kbjk:By the indu
tive hypothesis this is 0 for r = 1; 2; : : : ; n� 1; and for r = n it is equal to2nan+1 2n�1Xk=1 �kbn�1k = 2nn! n+1Yk=2 akas desired. Part (i) of the theorem is thus established by indu
tion with the value of �k as stated.To prove part (ii) of the theorem, observe that(4) Z 10 nYk=1 sin(akx)x dx = 12n�1 Z 10 x�nCn(x) dx:where Cn(x) := 2n�1Xk=1 �k 
os�bkx� �2n� : Be
ause Cn(x) is an entire fun
tion, bounded for allreal x; with a zero of order n at x = 0; we 
an integrate the right-hand side of (4) by parts n� 1times to get Z 10 nYk=1 sin(akx)x dx = 12n�1(n� 1)! Z 10 dxx 2n�1Xk=1 �kbn�1k sin(bkx)= 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k Z 10 sin(bkx)x dx= �2 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k sign(bk):Sin
e the additional hypothesis implies that bk � 0 for k = 1; 2; : : : ; 2n�1; the �nal formula in thetheorem follows from part (i). �



SINC INTEGRALS 7Corollary 1. If 2ak � an > 0 for k = 1; 2; : : : ; n� 1 andnXk=2 ak > a1 � n�1Xk=2 ak;then Z 10 rYk=1 sin(akx)x dx = �2 rYk=2 ak for r = 1; 2; : : : ; n� 1;while Z 10 nYk=1 sin(akx)x dx = �2 ( nYk=2 ak � (a2 + a3 + � � �+ an � a1)n�12n�2(n� 1)! ) :Proof. Observe thatb2n�1 := a1 � a2 � � � � � an < 0 so that �2n�1 = (�1)n�1;and that all other bk0s are non-negative. It follows thatZ 10 nYk=1 sin(akx)x dx = �2 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k sign(bk)= �2 12n�1(n� 1)! 0�2n�1Xk=1 �kbn�1k + �2n�1bn�12n�1�sign(b2n�1)� 1�1A= �2 ( nYk=2 ak � 2(�b2n�1)n�12n�1(n� 1)! ) ;as desired. �Remarks 1. (a) If all the ak0s are real and nonzero, then, by Theorem 2(ii),�n := Z 10 nYk=1 sin
(akx) dx = �2 12n�1(n� 1)!a1a2 � � � an 2n�1Xk=1 �kbn�1k sign(bk)= �2 12n�1(n� 1)!a1a2 � � � an 0�2n�1Xk=1 �kbn�1k + Xbk<0 �kbn�1k �sign(bk)� 1�1A= �2a1 (1� 22n�1(n� 1)!a2a3 � � � an Xbk<0 �kbn�1k ) :



8 DAVID BORWEIN AND JONATHAN M. BORWEIN(b) Suppose further that the ak 0s are positive. Consider the polyhedron P (n) given byP (a1; a2; � � � ; an) := f(x2; x3; � � � ; xn) : nXk=2 ak � a1; 0 � xk � ak; 2 � k � ng:If we return to equation (2) we may observe that�n = �2a1 1a2 a3 � � �an Z min(sn;a1)0 �a2 � �a3 � � � � � �an dx = �2a1 V ol(P (n))a2 a3 � � � an :Thus, in (a) we have evaluated the volume of P (n). Moreover, we now explain the behaviour of�n when we note that the value drops pre
isely when the 
onstraint nXk=2 xk � a1 be
omes a
tiveand bites into the hyper
ube f(x2; x3; � � � ; xn) : 0 � xk � ak; 2 � k � ng.(
) Consider now the spe
ial 
ase �n = �n := Z 10 sin
n(x) dx:In this 
ase we have ak = 1 for all k, and it is straightforward to verify thatXbk<0 �kbn�1k = X1�r�n2 (�1)r+1�n� 1r � 1�(n� 2r)n�1;and hen
e that �n :=�2 8<:1� 22n�1(n� 1)! X1�r�n2 (�1)r+1�n� 1r � 1�(n� 2r)n�19=;= �2 8<:1 + 12n�2 X1�r�n2 (�1)r(r � 1)! (n� 2r)n�1(n� r)! 9=; : �The next theorem extends Theorem 2 by adjoining 
osines to the produ
t of sines.Theorem 3. Let a1; a2; : : : ; an+m; be given 
omplex numbers, m;n being non-negative integerswith n � 1:(i) Then nYk=1 sin(akx)! n+mYk=n+1 
os(akx)! = 12n+m�1 2n+m�1Xk=1 �k 
os�bkx� �2n� ;



SINC INTEGRALS 9where bk = n+mXj=1 
jaj ; 
1 = 1; 
j = �1; �k = n+mYk=1 
k = �1;and 2n+m�1Xk=1 �kbrk =8><>: 0; for r = 1; 2; : : : ; n� 2,2n+m�1(n� 1)! nYk=2 ak; for r = n� 1:(ii) If the ak 0s are real, thenZ 10  nYk=1 sin(akx)x ! n+mYk=n+1 
os(akx)! dx= �2 12n+m�1(n� 1)! 2n+m�1Xk=1 �kbn�1k sign(bk):If, in addition, a1 � n+mXk=2 jakj;then Z 10  nYk=1 sin(akx)x ! n+mYk=n+1 
os(akx)! dx = �2 nYk=2 ak:Proof. By Theorem 2 we have thatn+mYk=1 sin(akx) = 12n+m�1 2n+m�1Xk=1 �0k 
os�bkx� �2 (n+m)� ;where bk = n+mXj=1 
jaj ; 
1 = 1; 
j = �1; �0k = n+mYk=1 
k = �1;and 2n+m�1Xk=1 �0kbrk = 8><>: 0; for r = 1; 2; : : : ; n+m� 2,2n+m�1(n+m� 1)! n+mYk=2 ak; for r = n+m� 1:Di�erentiating these expressions partially with respe
t to an+1; an+2; : : : ; an+m yields part (i) ofTheorem 3 with �k = 
m�0k: To deal with part (ii) of Theorem 3 we observe that, by Theorem 2,if the ak 0s are real, thenZ 10 n+mYk=1 sin(akx)x dx = �2 12n+m�1(n+m� 1)! 2n+m�1Xk=1 �0kbn�1k sign(bk):



10 DAVID BORWEIN AND JONATHAN M. BORWEINDi�erentiating partially with respe
t to an+1; an+2; : : : ; an+m; we getZ 10  nYk=1 sin(akx)x ! n+mYk=n+1 
os(akx)! dx= �2 12n+m�1(n� 1)! 2n+m�1Xk=1 �kbn�1k sign(bk):If, in addition, a1 � n+mXk=2 jakj;then, by Theorem 2, Z 10 n+mYk=1 sin(akx)x dx = �2 n+mYk=2 ak:Di�erentiating partially with respe
t to an+1; an+2; : : : ; an+m; we getZ 10  nYk=1 sin(akx)x ! n+mYk=n+1 
os(akx)! dx = �2 nYk=2 ak: �Corollary 2. If 2ak � an+m > 0 for k = 1; 2; : : : ; n+m� 1 andn+mXk=2 ak > a1 � n+m�1Xk=2 ak;then Z 10  rYk=1 sin(akx)x ! r+mYk=r+1 
os(akx)! dx = �2 nYk=2 ak for r = 1; 2; : : : ; n� 1;while Z 10  nYk=1 sin(akx)x ! n+mYk=n+1 
os(akx)! dx= �2 ( nYk=2 ak � (a2 + a3 + � � �+ an+m+1 � a1)n�12n+m�2(n� 1)! ) :Proof. The �rst part follows immediately from Theorem 3, and the se
ond part 
an be de-rived from Corollary 1 with n + m in pla
e of n by di�erentiating partially with respe
t toan+1; an+2; : : : ; an+m; as above. �



SINC INTEGRALS 114. An alternative proof. The next theorem is a restatement of the last part of Theorem 3restri
ted to real numbers. It appears as an example without proof in [5, p. 122℄ where it isas
ribed to Carl St�ormer [2℄. St�ormer's arti
le does not 
ontain the integral in question, but hisproof for the series identity1Xr=1(�1)r+1 nYk=1 sin(rak)r !0� mYj=1 
os(r
j)1A = 12 nYk=1 ak;provided nXk=1 jakj+ mXj=1 j
j j < �;is readily adapted to yield a proof of the theorem whi
h is radi
ally di�erent from the proof ofTheorem 3.Theorem 4. If a; a1; a2; : : : ; an; 
1; 
2; : : : ; 
m; are real numbers witha > nXk=1 jakj+ mXj=1 j
j j;then(5) Z 10  nYk=1 sin(akx)x !0� mYj=1 
os(
jx)1A sin(ax)x dx = �2 nYk=1 ak:Proof. We prove the theorem by indu
tion. Applying as before the 
onvention that empty sumshave the value 0 and empty produ
ts have the value 1, we observe that formula (5) for the 
asen = m = 0 redu
es to the standard resultZ 10 sin(ax)x dx = �2 when a > 0:Formula (5) also holds for the 
ase n = 1;m = 0; by the 
ase n = 2 of Theorem 1 (whi
h 
aneasily be proved dire
tly).Assume that the theorem holds for 
ertain integers n � 1 and m � 0: First suppose thata > nXk=1 jakj+ m+1Xj=1 j
j j:Then a > ja1 � 
m+1j+ nXk=2 jakj+ mXj=1 j
j j;



12 DAVID BORWEIN AND JONATHAN M. BORWEINand hen
e(6) Z 10 sin(a1 � 
m+1)x  nYk=2 sin(akx)x !0� mYj=1 
os(
jx)1A sin(ax)x dx= �2 (a1 � 
m+1) nYk=2 ak:Adding the two identities in (6), we immediately obtain(7) Z 10  nYk=1 sin(akx)x !0�m+1Yj=1 
os(
jx)1A sin(ax)x dx = �2 nYk=1 ak:Next suppose that a > n+1Xk=1 jakj+ mXj=1 j
j j;and let t lie between 0 and an+1. Then, by (7), we have(8) Z 10  nYk=1 sin(akx)x !0� mYj=1 
os(
jx)1A 
os(tx) sin(ax)x dx = �2 nYk=1 ak:Now integrate (8) with respe
t to t from 0 to an+1 to get(9) Z 10  n+1Yk=1 sin(akx)x !0� mYj=1 
os(
jx)1A sin(ax)x dx = �2 n+1Yk=1 ak:Identities (7) and (9) show that if the theorem holds for a pair of integers n;m with n � 1;m � 0;then it also holds for the pairs n;m+1 and n+1;m: Sin
e it holds for n = 1;m = 0; the proof is
ompleted by indu
tion. �Remarks 2. Parts of our previous theorems do, of 
ourse, overlap with Theorem 4, but thislatter theorem does not deal with 
ases where the identity in (4) fails, whereas the other theoremsdo. Thus, for example, Z 10 sin
(x) dx = �2 ;Z 10 sin
(x)sin
 �x3� dx = �2 ;� � �Z 10 sin
(x)sin
�x3� � � � sin
� x13� dx = �2 ;



SINC INTEGRALS 13yet(10) Z 10 sin
(x)sin
�x3� � � � sin
� x15� dx= 467807924713440738696537864469935615849440640907310521750000�;and this fra
tion in (10), in a

ord with Corollary 1, is approximately equal to 0.499999999992646.When this fa
t was re
ently veri�ed by a resear
her using a 
omputer algebra pa
kage, he 
on-
luded that there must be a \bug" in the software. Not so. In the above example, 13+ 15+� � �+ 113 <1, but with the addition of 115 , the sum ex
eeds 1 and the identity no longer holds. This is a some-what 
autionary example for too enthusiasti
ally inferring patterns from symboli
 or numeri
al
omputation. �5. An in�nite produ
t of 
osines. We return to the integral, whi
h we denote by �, in (1).Let C(x) := 1Yn=1 
os�xn� :Re
all Vieta's formula [3, p. 419℄ in the formsin
(x) = 1Yn=0 
os� x2n� ;and relatedly the produ
t expansionsin
(�x) = 1Yn=1�1� x2n2� :We may thus re-express C as the absolutely 
onvergent produ
t:(11) C(x) = 1Yn=0 sin
� 2x2n+ 1�and apply Theorem 1 to obtain0 < � = Z 10 C(x) dx = limN!1 Z 10 NYk=1 sin
� 2x2k � 1� dx < �4 :These sin
 integrals are essentially those of the previous Remarks. Note that all parts of Theorem1 apply sin
e 1Xk=1 1(2k � 1)2 <1 = 1Xk=1 12k � 1 .



14 DAVID BORWEIN AND JONATHAN M. BORWEINWe observe that Theorem 1 allows for reasonable lower bounds on �. Indeed, as 
os2 x > 1�x2 > 0for 0 < x < 1, we see | using the produ
t form for sin
 | that C2(x) > sin
(�x) on the samerange. Hen
e, by Theorem 1(iii),�4 > � > Z 10 C2(x) dx > 1� Z �0 sin
(x) dx � :5894898721:We 
ould produ
e a better lower bound, and indeed lower bounds for our more general sin
integrals in the same way.In fa
t Z 10 C(x) dx � 0:785380557298632873492583011467332524761while �4 � :785398 only di�ers in the �fth signi�
ant pla
e. We note that high pre
ision numeri
alevaluation of these highly os
illatory integrals is by no means straightforward.We �nish by re
ording without details that (11) allows us to obtain the Taylor series around 0 forlogC. It is logC(x) = � 1Xk=1 4k � 1k �2(2k)�2k x2k ;with radius of 
onvergen
e �=2. This in turn shows that the 
oeÆ
ient of x2n in the Taylor seriesfor C, say 
n, is a rational multiple of �2k and is expli
itly given by the re
ursion
n := 1n n�1Xk=1(4k � 1)�2(2k)�2k 
n�k:Thus C(x) = 1� 112 �2x2 + 114320 �4x4 � 2335443200 �6x6 + 14293048192000 �8x8 +O �x9� :Thanks are due to David Bailey, Ri
hard Crandall, Greg Fee and Frank Stegner for very usefuldis
ussions. Referen
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