
SOME REMARKABLE PROPERTIES OF SINC AND RELATED INTEGRALSDavid Borwein and Jonathan M. BorweinAbstrat. Using Fourier transform tehniques, we establish inequalities for integrals of the formZ 10 nYk=1 sin(akx)x dx:We then give quite striking losed form evaluations of suh integrals and �nish by disussing variousextensions and appliations.1. Introdution. Motivated by questions about the integral1(1) � := Z 10 1Yk=1 os�xk� dx;we study the behaviour of integrals of the formZ 10 nYk=1 sin(akx)x dx:In Setion 2 we use Fourier transform theory to establish monotoniity properties of these integralsas funtions of the parameters. In Setion 3, by diret methods, we give losed forms for theseintegrals and for similar integrals also inorporating osine terms. In Setion 4, we provide a verydi�erent proof of one of these results following an idea in an 1885 paper of St�ormer [2℄. Finally,in Setion 5 we return to the study of (1).2. Fourier osine transforms and sin integrals. De�nesin(x) := sinxx ;This researh was supported in part by the Natural Sienes and Engineering Researh Counil of Canada.1991 Mathematis Subjet Classi�ation. 42A99; 42A38.Key words and phrases. sin integrals, Fourier transforms, onvolution, Parseval's theorem.1Through J. Selfridge and R. Crandall we learned that B. Mares disovered, and proved that � < �=4.Typeset by AMS-TEX1



2 DAVID BORWEIN AND JONATHAN M. BORWEINand �a(x) := 8><>: 1 if 0 � x < a12 if x = a0 if x > a:We �rst state some standard results about the Fourier osine transform (FCT) whih may befound in texts suh as [4, h. 13℄. The FCT of a given funtion f 2 L2(0;1) is de�ned to be thefuntion F that is the L2-limit as y !1 ofy(x) :=r 2� Z y0 f(t) os(xt) dt; i.e. Z 10 jy(x) � F (x)j2 dx! 0 as y !1:This funtion F exists, is unique apart from sets of zero Lebesgue measure, F 2 L2(0;1) and fis the FCT of F . In addition, if f is ontinuous on [0; �℄ for some � > 0 and F 2 L1(0;1); thenr 2� Z 10 F (x) os(xt) dx = f(t) for 0 � t � �;sine the left-hand term is also ontinuous on [0; �℄ by dominated onvergene. Note that, fora > 0; the FCT of �a is ar 2� sin(ax); so that the FCT of ar 2� sin(ax) is �a: Note also that ifF1; F2 are FCTs of funtions f1; f2 2 L2(0;1); then F1F2 is the FCT of r 2� f1 � f2; wheref1 � f2(x) := Z x0 f1(x� t)f2(t) dt for x � 0:In addition, we have the following version of Parseval's theorem:Z 10 f1(x)f2(x) dx = Z 10 F1(x)F2(x) dx;provided at least one of the funtions f1; f2 is real.We are now in a position to prove:Theorem 1. Suppose that fang is a sequene of positive numbers. Let sn := nXk=2 ak; and �n :=Z 10 nYk=1 sin(akx) dx:(i) Then 0 < �n � 1a1 �2 ;with equality if n = 1; or if a1 � sn when n � 2:



SINC INTEGRALS 3(ii) If a1 < sn0 with n0 � 2; then0 < �n+1 < �n < �n0 < 1a1 �2 for n > n0:(iii) If a1 < sn0 with n0 � 2; and 1Xk=1 a2k <1; then�n > Z 10 1Yk=1 sin2(akx) dx > 0 for n > n0:Proof. Part (i). That �1 = 1a1 �2 is a standard result (proven e.g., by ontour integration in [1,p. 157℄ and by Fourier analysis in [3, p. 563℄) with the integral in question being improper (i.e.not absolutely onvergent|the integrals in the other ases are absolutely onvergent). Assumetherefore that n � 2; and letF1 := 1a1r�2�a1 ; Fn :=  r 2�!n�2 f2 � f3 � � � � � fn; where fn := 1anr�2�an :Then it is readily veri�ed by indution that Fn vanishes on (sn;1) and is positive and absolutelyontinuous on (0; sn): AlsoFn is the FCT of �n(x) := nYk=2 sin(akx); and �n is the FCT of Fn:Thus, all our funtions and transforms are in L1(0;1) \ L2(0;1). Hene, by the above versionof Parseval's theorem,(2) �n = Z 10 Fn(x)F1(x) dx = 1a1r�2 Z min(sn;a1)0 Fn(x) dx:When a1 � sn; the �nal term is equal to 1a1r�2r�2�n(0) = 1a1 �2 sine �n(x) is ontinuous on[0;1); and when a1 < sn; the term is positive and less than 1a1 �2 sine Fn(x) is positive andontinuous for 0 < x < sn: This establishes part (i).Part (ii). Observe that Fn+1 =r 2�Fn � fn+1; and hene that, for y > y1 > 0;Z y0 Fn+1(x) dx =r 2� Z y0 dx Z x0 Fn(t)fn+1(x� t) dt=r 2� Z y0 Fn(t) dt Z yt fn+1(x� t) dx = I1 + I2;



4 DAVID BORWEIN AND JONATHAN M. BORWEINwhere I1 :=r 2� Z y10 Fn(t) dt Z y�t0 fn+1(u) du andI2 :=r 2� Z yy1 Fn(t) dt Z y�t0 fn+1(u) du:Suppose now that 0 < y � sn and 0 < y � y1 < 12an+1: SineZ v0 fn+1(u) du < 12r�2 when 0 < v < 12an+1; andZ v0 fn+1(u) du �r�2 when 0 < v;we see that I1 � Z y10 Fn(t) dt and 0 < I2 � 12 Z yy1 Fn(t) dt;and hene that(3) Z y0 Fn+1(x) dx < Z y0 Fn(x) dx when 0 < y < sn:It follows from (2), and (3) with y = a1; that 0 < �n+1 < �n whenever a1 < sn; and this establishespart (ii).Part (iii). Let �2(x) := limn!1 �2n(x) = 1Yk=1 sin2(akx) for x > 0: Observe that the limit exists sine0 � sin2(akx) < 1; and that there is a set A di�ering from (0;1) by a ountable set suh that0 < sin2(akx) < 1 whenever x 2 A and k = 1; 2; : : : : Nowsin2(akx) = 1� Æk; where 0 � Æka2k ! x23 as k !1;so that 1Xk=1 Æk < 1; and hene, by standard theory of in�nite produts, �(x) > 0 for x 2 A: Itfollows that, for n � n0; �n > Z 10 �2n(x) dx � Z 10 �2(x) dx > 0;by part (ii). �Observe that applying this result to di�erent permutations of the parameters exposes di�erentinequalities. Also, part (iii) and dominated onvergene imply that, subjet to the hypotheses ofpart (iii), Z 10 1Yk=1 sin(akx) dx � Z 10 1Yk=1 sin2(akx) dx:



SINC INTEGRALS 53. Some elementary identities. In this setion we prove some identities involving produts ofsines and osines by straightforward methods not involving Fourier transform theory. We adoptthe usual onvention that empty sums have the value 0 and empty produts have the value 1:Theorem 2. Let a1; a2; : : : ; an; be given omplex numbers.(i) Then nYk=1 sin(akx) = 12n�1 2n�1Xk=1 �k os�bkx� �2n� ;where bk = nXj=1 jaj ; 1 = 1; j = �1; �k = nYk=1 k = �1;and 2n�1Xk=1 �kbrk =8><>: 0; for r = 1; 2; : : : ; n� 2,2n�1(n� 1)! nYk=2 ak; for r = n� 1:(ii) If the ak 0s are real, thenZ 10 nYk=1 sin(akx)x dx = �2 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k sign(bk):If, in addition, a1 � nXk=2 jakj;then Z 10 nYk=1 sin(akx)x dx = �2 nYk=2 ak:Proof. We prove part (i) by indution, observing that it is true for the ase n = 1: Suppose that(i) holds for a ertain positive integer n; and that an+1 is an arbitrary omplex number. Then2n n+1Yk=1 sin(akx) = 2 2n�1Xk=1 �k os�bkx� �2n� sin(an+1x)= 2n�1Xk=1 �k nos�(bk + an+1)x� �2 (n+ 1)�� os�(bk � an+1)x� �2 (n+ 1)�o= 2nXk=1 �0k os�b0kx� �2 (n+ 1)� ;



6 DAVID BORWEIN AND JONATHAN M. BORWEINwhere, for k = 1; 2; : : : ; 2n�1;�0k := �k; �0k+2n�1 := ��k; b0k := bk + an+1; b0k+2n�1 := bk � an+1:Hene, for r = 1; 2; : : : ; n;2nXk=1 �0k(b0k)r = 2n�1Xk=1 �k f(bk + an+1)r � (bk � an+1)rg= 2n�1Xk=1 �k rXj=0�rj��1� (�1)r�j	 bjkar�jn+1= r�1Xj=0�rj��1� (�1)r�j	 ar�jn+1 2N�1Xk=1 �kbjk:By the indutive hypothesis this is 0 for r = 1; 2; : : : ; n� 1; and for r = n it is equal to2nan+1 2n�1Xk=1 �kbn�1k = 2nn! n+1Yk=2 akas desired. Part (i) of the theorem is thus established by indution with the value of �k as stated.To prove part (ii) of the theorem, observe that(4) Z 10 nYk=1 sin(akx)x dx = 12n�1 Z 10 x�nCn(x) dx:where Cn(x) := 2n�1Xk=1 �k os�bkx� �2n� : Beause Cn(x) is an entire funtion, bounded for allreal x; with a zero of order n at x = 0; we an integrate the right-hand side of (4) by parts n� 1times to get Z 10 nYk=1 sin(akx)x dx = 12n�1(n� 1)! Z 10 dxx 2n�1Xk=1 �kbn�1k sin(bkx)= 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k Z 10 sin(bkx)x dx= �2 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k sign(bk):Sine the additional hypothesis implies that bk � 0 for k = 1; 2; : : : ; 2n�1; the �nal formula in thetheorem follows from part (i). �



SINC INTEGRALS 7Corollary 1. If 2ak � an > 0 for k = 1; 2; : : : ; n� 1 andnXk=2 ak > a1 � n�1Xk=2 ak;then Z 10 rYk=1 sin(akx)x dx = �2 rYk=2 ak for r = 1; 2; : : : ; n� 1;while Z 10 nYk=1 sin(akx)x dx = �2 ( nYk=2 ak � (a2 + a3 + � � �+ an � a1)n�12n�2(n� 1)! ) :Proof. Observe thatb2n�1 := a1 � a2 � � � � � an < 0 so that �2n�1 = (�1)n�1;and that all other bk0s are non-negative. It follows thatZ 10 nYk=1 sin(akx)x dx = �2 12n�1(n� 1)! 2n�1Xk=1 �kbn�1k sign(bk)= �2 12n�1(n� 1)! 0�2n�1Xk=1 �kbn�1k + �2n�1bn�12n�1�sign(b2n�1)� 1�1A= �2 ( nYk=2 ak � 2(�b2n�1)n�12n�1(n� 1)! ) ;as desired. �Remarks 1. (a) If all the ak0s are real and nonzero, then, by Theorem 2(ii),�n := Z 10 nYk=1 sin(akx) dx = �2 12n�1(n� 1)!a1a2 � � � an 2n�1Xk=1 �kbn�1k sign(bk)= �2 12n�1(n� 1)!a1a2 � � � an 0�2n�1Xk=1 �kbn�1k + Xbk<0 �kbn�1k �sign(bk)� 1�1A= �2a1 (1� 22n�1(n� 1)!a2a3 � � � an Xbk<0 �kbn�1k ) :



8 DAVID BORWEIN AND JONATHAN M. BORWEIN(b) Suppose further that the ak 0s are positive. Consider the polyhedron P (n) given byP (a1; a2; � � � ; an) := f(x2; x3; � � � ; xn) : nXk=2 ak � a1; 0 � xk � ak; 2 � k � ng:If we return to equation (2) we may observe that�n = �2a1 1a2 a3 � � �an Z min(sn;a1)0 �a2 � �a3 � � � � � �an dx = �2a1 V ol(P (n))a2 a3 � � � an :Thus, in (a) we have evaluated the volume of P (n). Moreover, we now explain the behaviour of�n when we note that the value drops preisely when the onstraint nXk=2 xk � a1 beomes ativeand bites into the hyperube f(x2; x3; � � � ; xn) : 0 � xk � ak; 2 � k � ng.() Consider now the speial ase �n = �n := Z 10 sinn(x) dx:In this ase we have ak = 1 for all k, and it is straightforward to verify thatXbk<0 �kbn�1k = X1�r�n2 (�1)r+1�n� 1r � 1�(n� 2r)n�1;and hene that �n :=�2 8<:1� 22n�1(n� 1)! X1�r�n2 (�1)r+1�n� 1r � 1�(n� 2r)n�19=;= �2 8<:1 + 12n�2 X1�r�n2 (�1)r(r � 1)! (n� 2r)n�1(n� r)! 9=; : �The next theorem extends Theorem 2 by adjoining osines to the produt of sines.Theorem 3. Let a1; a2; : : : ; an+m; be given omplex numbers, m;n being non-negative integerswith n � 1:(i) Then nYk=1 sin(akx)! n+mYk=n+1 os(akx)! = 12n+m�1 2n+m�1Xk=1 �k os�bkx� �2n� ;



SINC INTEGRALS 9where bk = n+mXj=1 jaj ; 1 = 1; j = �1; �k = n+mYk=1 k = �1;and 2n+m�1Xk=1 �kbrk =8><>: 0; for r = 1; 2; : : : ; n� 2,2n+m�1(n� 1)! nYk=2 ak; for r = n� 1:(ii) If the ak 0s are real, thenZ 10  nYk=1 sin(akx)x ! n+mYk=n+1 os(akx)! dx= �2 12n+m�1(n� 1)! 2n+m�1Xk=1 �kbn�1k sign(bk):If, in addition, a1 � n+mXk=2 jakj;then Z 10  nYk=1 sin(akx)x ! n+mYk=n+1 os(akx)! dx = �2 nYk=2 ak:Proof. By Theorem 2 we have thatn+mYk=1 sin(akx) = 12n+m�1 2n+m�1Xk=1 �0k os�bkx� �2 (n+m)� ;where bk = n+mXj=1 jaj ; 1 = 1; j = �1; �0k = n+mYk=1 k = �1;and 2n+m�1Xk=1 �0kbrk = 8><>: 0; for r = 1; 2; : : : ; n+m� 2,2n+m�1(n+m� 1)! n+mYk=2 ak; for r = n+m� 1:Di�erentiating these expressions partially with respet to an+1; an+2; : : : ; an+m yields part (i) ofTheorem 3 with �k = m�0k: To deal with part (ii) of Theorem 3 we observe that, by Theorem 2,if the ak 0s are real, thenZ 10 n+mYk=1 sin(akx)x dx = �2 12n+m�1(n+m� 1)! 2n+m�1Xk=1 �0kbn�1k sign(bk):



10 DAVID BORWEIN AND JONATHAN M. BORWEINDi�erentiating partially with respet to an+1; an+2; : : : ; an+m; we getZ 10  nYk=1 sin(akx)x ! n+mYk=n+1 os(akx)! dx= �2 12n+m�1(n� 1)! 2n+m�1Xk=1 �kbn�1k sign(bk):If, in addition, a1 � n+mXk=2 jakj;then, by Theorem 2, Z 10 n+mYk=1 sin(akx)x dx = �2 n+mYk=2 ak:Di�erentiating partially with respet to an+1; an+2; : : : ; an+m; we getZ 10  nYk=1 sin(akx)x ! n+mYk=n+1 os(akx)! dx = �2 nYk=2 ak: �Corollary 2. If 2ak � an+m > 0 for k = 1; 2; : : : ; n+m� 1 andn+mXk=2 ak > a1 � n+m�1Xk=2 ak;then Z 10  rYk=1 sin(akx)x ! r+mYk=r+1 os(akx)! dx = �2 nYk=2 ak for r = 1; 2; : : : ; n� 1;while Z 10  nYk=1 sin(akx)x ! n+mYk=n+1 os(akx)! dx= �2 ( nYk=2 ak � (a2 + a3 + � � �+ an+m+1 � a1)n�12n+m�2(n� 1)! ) :Proof. The �rst part follows immediately from Theorem 3, and the seond part an be de-rived from Corollary 1 with n + m in plae of n by di�erentiating partially with respet toan+1; an+2; : : : ; an+m; as above. �



SINC INTEGRALS 114. An alternative proof. The next theorem is a restatement of the last part of Theorem 3restrited to real numbers. It appears as an example without proof in [5, p. 122℄ where it isasribed to Carl St�ormer [2℄. St�ormer's artile does not ontain the integral in question, but hisproof for the series identity1Xr=1(�1)r+1 nYk=1 sin(rak)r !0� mYj=1 os(rj)1A = 12 nYk=1 ak;provided nXk=1 jakj+ mXj=1 jj j < �;is readily adapted to yield a proof of the theorem whih is radially di�erent from the proof ofTheorem 3.Theorem 4. If a; a1; a2; : : : ; an; 1; 2; : : : ; m; are real numbers witha > nXk=1 jakj+ mXj=1 jj j;then(5) Z 10  nYk=1 sin(akx)x !0� mYj=1 os(jx)1A sin(ax)x dx = �2 nYk=1 ak:Proof. We prove the theorem by indution. Applying as before the onvention that empty sumshave the value 0 and empty produts have the value 1, we observe that formula (5) for the asen = m = 0 redues to the standard resultZ 10 sin(ax)x dx = �2 when a > 0:Formula (5) also holds for the ase n = 1;m = 0; by the ase n = 2 of Theorem 1 (whih aneasily be proved diretly).Assume that the theorem holds for ertain integers n � 1 and m � 0: First suppose thata > nXk=1 jakj+ m+1Xj=1 jj j:Then a > ja1 � m+1j+ nXk=2 jakj+ mXj=1 jj j;



12 DAVID BORWEIN AND JONATHAN M. BORWEINand hene(6) Z 10 sin(a1 � m+1)x  nYk=2 sin(akx)x !0� mYj=1 os(jx)1A sin(ax)x dx= �2 (a1 � m+1) nYk=2 ak:Adding the two identities in (6), we immediately obtain(7) Z 10  nYk=1 sin(akx)x !0�m+1Yj=1 os(jx)1A sin(ax)x dx = �2 nYk=1 ak:Next suppose that a > n+1Xk=1 jakj+ mXj=1 jj j;and let t lie between 0 and an+1. Then, by (7), we have(8) Z 10  nYk=1 sin(akx)x !0� mYj=1 os(jx)1A os(tx) sin(ax)x dx = �2 nYk=1 ak:Now integrate (8) with respet to t from 0 to an+1 to get(9) Z 10  n+1Yk=1 sin(akx)x !0� mYj=1 os(jx)1A sin(ax)x dx = �2 n+1Yk=1 ak:Identities (7) and (9) show that if the theorem holds for a pair of integers n;m with n � 1;m � 0;then it also holds for the pairs n;m+1 and n+1;m: Sine it holds for n = 1;m = 0; the proof isompleted by indution. �Remarks 2. Parts of our previous theorems do, of ourse, overlap with Theorem 4, but thislatter theorem does not deal with ases where the identity in (4) fails, whereas the other theoremsdo. Thus, for example, Z 10 sin(x) dx = �2 ;Z 10 sin(x)sin �x3� dx = �2 ;� � �Z 10 sin(x)sin�x3� � � � sin� x13� dx = �2 ;



SINC INTEGRALS 13yet(10) Z 10 sin(x)sin�x3� � � � sin� x15� dx= 467807924713440738696537864469935615849440640907310521750000�;and this fration in (10), in aord with Corollary 1, is approximately equal to 0.499999999992646.When this fat was reently veri�ed by a researher using a omputer algebra pakage, he on-luded that there must be a \bug" in the software. Not so. In the above example, 13+ 15+� � �+ 113 <1, but with the addition of 115 , the sum exeeds 1 and the identity no longer holds. This is a some-what autionary example for too enthusiastially inferring patterns from symboli or numerialomputation. �5. An in�nite produt of osines. We return to the integral, whih we denote by �, in (1).Let C(x) := 1Yn=1 os�xn� :Reall Vieta's formula [3, p. 419℄ in the formsin(x) = 1Yn=0 os� x2n� ;and relatedly the produt expansionsin(�x) = 1Yn=1�1� x2n2� :We may thus re-express C as the absolutely onvergent produt:(11) C(x) = 1Yn=0 sin� 2x2n+ 1�and apply Theorem 1 to obtain0 < � = Z 10 C(x) dx = limN!1 Z 10 NYk=1 sin� 2x2k � 1� dx < �4 :These sin integrals are essentially those of the previous Remarks. Note that all parts of Theorem1 apply sine 1Xk=1 1(2k � 1)2 <1 = 1Xk=1 12k � 1 .



14 DAVID BORWEIN AND JONATHAN M. BORWEINWe observe that Theorem 1 allows for reasonable lower bounds on �. Indeed, as os2 x > 1�x2 > 0for 0 < x < 1, we see | using the produt form for sin | that C2(x) > sin(�x) on the samerange. Hene, by Theorem 1(iii),�4 > � > Z 10 C2(x) dx > 1� Z �0 sin(x) dx � :5894898721:We ould produe a better lower bound, and indeed lower bounds for our more general sinintegrals in the same way.In fat Z 10 C(x) dx � 0:785380557298632873492583011467332524761while �4 � :785398 only di�ers in the �fth signi�ant plae. We note that high preision numerialevaluation of these highly osillatory integrals is by no means straightforward.We �nish by reording without details that (11) allows us to obtain the Taylor series around 0 forlogC. It is logC(x) = � 1Xk=1 4k � 1k �2(2k)�2k x2k ;with radius of onvergene �=2. This in turn shows that the oeÆient of x2n in the Taylor seriesfor C, say n, is a rational multiple of �2k and is expliitly given by the reursionn := 1n n�1Xk=1(4k � 1)�2(2k)�2k n�k:Thus C(x) = 1� 112 �2x2 + 114320 �4x4 � 2335443200 �6x6 + 14293048192000 �8x8 +O �x9� :Thanks are due to David Bailey, Rihard Crandall, Greg Fee and Frank Stegner for very usefuldisussions. Referenes1. L. V. Ahlfors, Complex Analysis, MGraw-Hill, New York, 1966.2. C. St�ormer, Sur un g�en�eralisation de la formule �2 = sin�1 � sin 2�2 + sin 3�3 � � � � , Ata Math. 19 (1885),341{350.3. Karl R. Stromberg, An Introdution to Modern Real Analysis, Wadsworth In., Belmont California, 1981.4. E. C. Tithmarsh, The Theory of Funtions, Oxford University Press, London, 1947.
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