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I list several proofs of the celebrated identity:

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
. (1)

As it is clear that

3

4
ζ(2) =

∞∑
n=1

1

n2
−

∞∑
m=1

1

(2m)2
=

∞∑
r=0

1

(2r + 1)2
,

(1) is equivalent to
∞∑

r=0

1

(2r + 1)2
=

π2

8
. (2)

Many of the proofs establish this latter identity first.
None of these proofs is original; most are well known, but some are not

as familiar as they might be. I shall try to assign credit the best I can, and
I would be grateful to anyone who could shed light on the origin of any of
these methods. I would like to thank Tony Lezard, José Carlos Santos and
Ralph Krause, who spotted errors in earlier versions, and Richard Carr for
pointing out an egregious solecism.

Proof 1: Note that

1

n2
=

∫ 1

0

∫ 1

0

xn−1yn−1dx dy
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and by the monotone convergence theorem we get

∞∑
n=1

1

n2
=

∫ 1

0

∫ 1

0

(
∞∑

n=1

(xy)n−1

)
dx dy

=

∫ 1

0

∫ 1

0

dx dy

1− xy
.

We change variables in this by putting (u, v) = ((x+y)/2, (y−x)/2), so that
(x, y) = (u− v, u + v). Hence

ζ(2) = 2

∫ ∫
S

du dv

1− u2 + v2

where S is the square with vertices (0, 0), (1/2,−1/2), (1, 0) and (1/2, 1/2).
Exploiting the symmetry of the square we get

ζ(2) = 4

∫ 1/2

0

∫ u

0

dv du

1− u2 + v2
+ 4

∫ 1

1/2

∫ 1−u

0

dv du

1− u2 + v2

= 4

∫ 1/2

0

1√
1− u2

tan−1

(
u√

1− u2

)
du

+4

∫ 1

1/2

1√
1− u2

tan−1

(
1− u√
1− u2

)
du.

Now tan−1(u/(
√

1− u2)) = sin−1 u, and if θ = tan−1((1 − u)/(
√

1− u2))
then tan2 θ = (1 − u)/(1 + u) and sec2 θ = 2/(1 + u). It follows that u =
2 cos2 θ − 1 = cos 2θ and so θ = 1

2
cos−1 u = π

4
− 1

2
sin−1 u. Hence

ζ(2) = 4

∫ 1/2

0

sin−1 u√
1− u2

du + 4

∫ 1

1/2

1√
1− u2

(
π

4
− sin−1 u

2

)
du

=
[
2(sin−1 u)2

]1/2

0
+
[
π sin−1 u− (sin−1 u)2

]1
1/2

=
π2

18
+

π2

2
− π2

4
− π2

6
+

π2

36

=
π2

6

as required.
This is taken from an article in the Mathematical Intelligencer by Apostol

in 1983.

Proof 2: We start in a similar fashion to Proof 1, but we use (2). We get

∞∑
r=0

1

(2r + 1)2
=

∫ 1

0

∫ 1

0

dx dy

1− x2y2
.
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We make the substitution

(u, v) =

(
tan−1 x

√
1− y2

1− x2
, tan−1 y

√
1− x2

1− y2

)
so that

(x, y) =

(
sin u

cos v
,
sin v

cos u

)
.

The Jacobian matrix is

∂(x, y)

∂(u, v)
=

∣∣∣∣ cos u/ cos v sin u sin v/ cos2 v
sin u sin v/ cos2 u cos v/ cos u

∣∣∣∣
= 1− sin2 u sin2 v

cos2 u cos2 v
= 1− x2y2.

Hence
3

4
ζ(2) =

∫ ∫
A

du dv

where
A = {(u, v) : u > 0, v > 0, u + v < π/2}

has area π2/8, and again we get ζ(2) = π2/6.
This is due to Calabi, Beukers and Kock.

Proof 3: We use the power series for the inverse sine function:

sin−1 x =
∞∑

n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

x2n+1

2n + 1

valid for |x| ≤ 1. Putting x = sin t we get

t =
∞∑

n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
sin2n+1 t

2n + 1

for |t| ≤ π
2
. Integrating from 0 to π

2
and using the formula∫ π/2

0

sin2n+1 x dx =
2 · 4 · · · (2n)

3 · 5 · · · (2n + 1)

gives us
π2

8
=

∫ π/2

0

t dt =
∞∑

n=0

1

(2n + 1)2
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which is (2).
This comes from a note by Boo Rim Choe in the American Mathematical

Monthly in 1987.

Proof 4: We use the L2-completeness of the trigonometric functions. Let
en(x) = exp(2πinx) where n ∈ Z. The en form a complete orthonormal set in
L2[ 0, 1 ]. If we denote the inner product in L2[ 0, 1 ] by 〈 , 〉, then Parseval’s
formula states that

〈f, f〉 =
∞∑

n=−∞

|〈f, en〉|2

for all f ∈ L2[ 0, 1 ]. We apply this to f(x) = x. We easily compute 〈f, f〉 = 1
3
,

〈f, e0〉 = 1
2

and 〈f, en〉 = 1
2πin

for n 6= 0. Hence Parseval gives us

1

3
=

1

4
+

∑
n∈Z,n6=0

1

4π2n2

and so ζ(2) = π2/6.
Alternatively we can apply Parseval to g = χ[0,1/2]. We get 〈g, g〉 = 1

2
,

〈g, e0〉 = 1
2

and 〈g, en〉 = ((−1)n − 1)/2πin for n 6= 0. Hence Parseval gives
us

1

2
=

1

4
+ 2

∞∑
r=0

1

π2(2r + 1)2

and using (2) we again get ζ(2) = π2/6.
This is a textbook proof, found in many books on Fourier analysis.

Proof 5: We use the fact that if f is continuous, of bounded variation on
[ 0, 1 ] and f(0) = f(1), then the Fourier series of f converges to f pointwise.
Applying this to f(x) = x(1− x) gives

x(1− x) =
1

6
−

∞∑
n=1

cos 2πnx

π2n2
,

and putting x = 0 we get ζ(2) = π2/6. Alternatively putting x = 1/2 gives

π2

12
= −

∞∑
n=1

(−1)n

n2

which again is equivalent to ζ(2) = π2/6.
Another textbook proof.
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Proof 6: Consider the series

f(t) =
∞∑

n=1

cos nt

n2
.

This is uniformly convergent on the real line. Now if ε > 0, then for t ∈
[ ε, 2π − ε ] we have

N∑
n=1

sin nt =
N∑

n=1

eint − e−int

2i

=
eit − ei(N+1)t

2i(1− eit)
− e−it − e−i(N+1)t

2i(1− e−it)

=
eit − ei(N+1)t

2i(1− eit)
+

1− e−iNt

2i(1− eit)

and so this sum is bounded above in absolute value by

2

|1− eit|
=

1

sin t/2
.

Hence these sums are uniformly bounded on [ ε, 2π − ε ] and by Dirichlet’s
test the sum

∞∑
n=1

sin nt

n

is uniformly convergent on [ ε, 2π − ε ]. It follows that for t ∈ (0, 2π)

f ′(t) = −
∞∑

n=1

sin nt

n

= −Im

(
∞∑

n=1

eint

n

)
= Im(log(1− eit))

= arg(1− eit)

=
t− π

2
.

By the fundamental theorem of calculus we have

f(π)− f(0) =

∫ π

0

t− π

2
dt = −π2

4
.

But f(0) = ζ(2) and f(π) =
∑∞

n=1(−1)n/n2 = −ζ(2)/2. Hence ζ(2) = π2/6.
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Alternatively we can put

D(z) =
∞∑

n=1

zn

n2
,

the dilogarithm function. This is uniformly convergent on the closed unit
disc, and satisfies D′(z) = −(log(1 − z))/z on the open unit disc. Note
that f(t) = Re D(e2πit). We may now use arguments from complex variable
theory to justify the above formula for f ′(t).

This is just the previous proof with the Fourier theory eliminated.

Proof 7: We use the infinite product

sin πx = πx

∞∏
n=1

(
1− x2

n2

)
for the sine function. Comparing coefficients of x3 in the MacLaurin series of
sides immediately gives ζ(2) = π2/6. An essentially equivalent proof comes
from considering the coefficient of x in the formula

π cot πx =
1

x
+

∞∑
n=1

2x

x2 − n2
.

The original proof of Euler!

Proof 8: We use the calculus of residues. Let f(z) = πz−2 cot πz. Then f
has poles at precisely the integers; the pole at zero has residue −π2/3, and
that at a non-zero integer n has residue 1/n2. Let N be a natural number
and let CN be the square contour with vertices (±1 ± i)(N + 1/2). By the
calculus of residues

−π2

3
+ 2

N∑
n=1

1

n2
=

1

2πi

∫
CN

f(z) dz = IN

say. Now if πz = x + iy a straightforward calculation yields

| cot πz|2 =
cos2 x + sinh2 y

sin2 x + sinh2 y
.

It follows that if z lies on the vertical edges of Cn then

| cot πz|2 =
sinh2 y

1 + sinh2 y
< 1
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and if z lies on the horizontal edges of Cn

| cot πz|2 ≤ 1 + sinh2 π(N + 1/2)

sinh2 π(N + 1/2)
= coth2 π(N + 1/2) ≤ coth2 π/2.

Hence | cot πz| ≤ K = coth π
2

on CN , and so |f(z)| ≤ πK/(N +1/2)2 on CN .
This estimate shows that

|In| ≤
1

2π

πK

(N + 1/2)2
8(N + 1/2)

and so IN → 0 as N →∞. Again we get ζ(2) = π2/6.
Another textbook proof, found in many books on complex analysis.

Proof 9: We first note that if 0 < x < π
2

then sin x < x < tan x and so
cot2 x < x−2 < 1 + cot2 x. If n and N are natural numbers with 1 ≤ n ≤ N
this implies that

cot2 nπ

(2N + 1)
<

(2N + 1)2

n2π2
< 1 + cot2 nπ

(2N + 1)

and so

π2

(2N + 1)2

N∑
n=1

cot2 nπ

(2N + 1)

<
N∑

n=1

1

n2

<
Nπ2

(2N + 1)2
+

π2

(2N + 1)2

N∑
n=1

cot2 nπ

(2N + 1)
.

If

AN =
N∑

n=1

cot2 nπ

(2N + 1)

it suffices to show that limN→∞ AN/N2 = 2
3
.

If 1 ≤ n ≤ N and θ = nπ/(2N + 1), then sin(2N + 1)θ = 0 but sin θ 6= 0.
Now sin(2N + 1)θ is the imaginary part of (cos θ + i sin θ)2N+1, and so

sin(2N + 1)θ

sin2N+1 θ
=

1

sin2N+1 θ

N∑
k=0

(−1)k

(
2N + 1

2N − 2k

)
cos2(N−k) θ sin2k+1 θ

=
N∑

k=0

(−1)k

(
2N + 1

2N − 2k

)
cot2(N−k) θ

= f(cot2 θ)
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say, where f(x) = (2N+1)xN−
(
2N+1

3

)
xN−1+· · ·. Hence the roots of f(x) = 0

are cot2(nπ/(2N + 1)) where 1 ≤ n ≤ N and so AN = N(2N − 1)/3. Thus
AN/N2 → 2

3
, as required.

This is an exercise in Apostol’s Mathematical Analysis (Addison-Wesley,
1974).

Proof 10: Given an odd integer n = 2m + 1 it is well known that sin nx =
Fn(sin x) where Fn is a polynomial of degree n. Since the zeros of Fn(y) are
the values sin(jπ/n) (−m ≤ j ≤ m) and limy→0(Fn(y)/y) = n then

Fn(y) = ny

m∏
j=1

(
1− y2

sin2(jπ/n)

)
and so

sin nx = n sin x
m∏

j=1

(
1− sin2 x

sin2(jπ/n)

)
.

Comparing the coefficients of x3 in the MacLaurin expansion of both sides
gives

−n3

6
= −n

6
− n

m∑
j=1

1

sin2(jπ/n)

and so
1

6
−

m∑
j=1

1

n2 sin2(jπ/n)
=

1

6n2
.

Fix an integer M and let m > M . Then

1

6
−

M∑
j=1

1

n2 sin2(jπ/n)
=

1

6n2
+

m∑
j=M+1

1

n2 sin2(jπ/n)

and using the inequality sin x > 2
π
x for 0 < x < π

2
, we get

0 <
1

6
−

M∑
j=1

1

n2 sin2(jπ/n)
<

1

6n2
+

m∑
j=M+1

1

4j2
.

Letting m tend to infinity now gives

0 ≤ 1

6
−

M∑
j=1

1

π2j2
≤

∞∑
j=M+1

1

4j2
.
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Hence
∞∑

j=1

1

π2j2
=

1

6
.

This comes from a note by Kortram in Mathematics Magazine in 1996.

Proof 11: Consider the integrals

In =

∫ π/2

0

cos2n x dx and Jn =

∫ π/2

0

x2 cos2n x dx.

By a well-known reduction formula

In =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n
π

2
=

(2n)!

4nn!2
π

2
.

If n > 0 then integration by parts gives

In =
[
x cos2n x

]π/2

0
+ 2n

∫ π/2

0

x sin x cos2n−1 x dx

= n
[
x2 sin x cos2n−1 x

]π/2

0

− n

∫ π/2

0

x2(cos2n x− (2n− 1) sin2 x cos2n−2 x) dx

= n(2n− 1)Jn−1 − 2n2Jn.

Hence
(2n)!

4nn!2
π

2
= n(2n− 1)Jn−1 − 2n2Jn

and so
π

4n2
=

4n−1(n− 1)!2

(2n− 2)!
Jn−1 −

4nn!2

(2n)!
Jn.

Adding this up from n = 1 to N gives

π

4

N∑
n=1

1

n2
= J0 −

4NN !2

(2N)!
JN .

Since J0 = π3/24 it suffices to show that limN→∞ 4NN !2JN/(2N)! = 0. But
the inequality x < π

2
sin x for 0 < x < π

2
gives

JN <
π2

4

∫ π2

0

sin2 x cos2N x dx =
π2

4
(IN − IN+1) =

π2IN

8(N + 1)
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and so

0 <
4NN !

(2N)!
JN <

π3

16(N + 1)
.

This completes the proof.
This proof is due to Matsuoka (American Mathematical Monthly, 1961).

Proof 12: Consider the well-known identity for the Fejér kernel:(
sin nx/2

sin x/2

)2

=
n∑

k=−n

(n− |k|)eikx = n + 2
n∑

k=1

(n− k) cos kx.

Hence ∫ π

0

x

(
sin nx/2

sin x/2

)2

dx =
nπ2

2
+ 2

n∑
k=1

(n− k)

∫ π

0

x cos kx dx

=
nπ2

2
− 2

n∑
k=1

(n− k)
1− (−1)k

k2

=
nπ2

2
− 4n

∑
1≤k≤n,2-k

1

k2
+ 4

∑
1≤k≤n,2-k

1

k

If we let n = 2N with N an integer then∫ π

0

x

8N

(
sin Nx

sin x/2

)2

dx =
π2

8
−

N−1∑
r=0

1

(2r + 1)2
+ O

(
log N

N

)
.

But since sin x
2

> x
π

for 0 < x < π then∫ π

0

x

8N

(
sin Nx

sin x/2

)2

dx <
π2

8N

∫ π

0

sin2 Nx
dx

x

=
π2

8N

∫ Nπ

0

sin2 y
dy

y
= O

(
log N

N

)
.

Taking limits as N →∞ gives

π2

8
=

∞∑
r=0

1

(2r + 1)2
.

This proof is due to Stark (American Mathematical Monthly, 1969).

Proof 13: We carefully square Gregory’s formula

π

4
=

∞∑
n=0

(−1)n

2n + 1
.
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We can rewrite this as limN→∞ aN = π
2

where

aN =
N∑

n=−N

(−1)n

2n + 1
.

Let

bN =
N∑

n=−N

1

(2n + 1)2
.

By (2) it suffices to show that limN→∞ bN = π2/4, so we shall show that
limN→∞ (a2

N − bN) = 0.
If n 6= m then

1

(2n + 1)(2m + 1)
=

1

2(m− n)

(
1

2n + 1
− 1

2m + 1

)
and so

a2
N − bN =

N∑
n=−N

N∑
m=−N

′
(−1)m+n

2(m− n)

(
1

2n + 1
− 1

2m + 1

)

=
N∑

n=−N

N∑
m=−N

′
(−1)m+n

(2n + 1)(m− n)

=
N∑

n=−N

(−1)ncn,N

2n + 1

where the dash on the summations means that terms with zero denominators
are omitted, and

cn,N =
N∑

m=−N

′
(−1)m

(m− n)
.

It is easy to see that c−n,N = −cn,N and so c0,N = 0. If n > 0 then

cn,N = (−1)n+1

N+n∑
j=N−n+1

(−1)j

j

and so |cn,N | ≤ 1/(N − n + 1) as the magnitude of this alternating sum is
not more than that of its first term. Thus

|a2
N − bN | ≤

N∑
n=1

(
1

(2n− 1)(N − n + 1)
+

1

(2n + 1)(N − n + 1)

)
11



=
N∑

n=1

1

2N + 1

(
2

2n− 1
+

1

N − n + 1

)

+
N∑

n=1

1

2N + 3

(
2

2n + 1
+

1

N − n + 1

)
≤ 1

2N + 1
(2 + 4 log(2N + 1) + 2 + 2 log(N + 1))

and so a2
N − bN → 0 as N →∞ as required.

This is an exercise in Borwein & Borwein’s Pi and the AGM (Wiley,
1987).

Proof 14: This depends on the formula for the number of representations
of a positive integer as a sum of four squares. Let r(n) be the number of
quadruples (x, y, z, t) of integers such that n = x2 + y2 + z2 + t2. Trivially
r(0) = 1 and it is well known that

r(n) = 8
∑

m|n,4-m

m

for n > 0. Let R(N) =
∑N

n=0 r(n). It is easy to see that R(N) is asymptotic

to the volume of the 4-dimensional ball of radius
√

N , i.e., R(N) ∼ π2

2
N2.

But

R(N) = 1 + 8
N∑

n=1

∑
m|n,4-m

m = 1 + 8
∑

m≤N,4-m

m

⌊
N

m

⌋
= 1 + 8(θ(N)− 4θ(N/4))

where
θ(x) =

∑
m≤x

m
⌊ x

m

⌋
.

But

θ(x) =
∑

mr≤x

m

=
∑
r≤x

bx/rc∑
m=1

m

=
1

2

∑
r≤x

(⌊x

r

⌋2

+
⌊x

r

⌋)
=

1

2

∑
r≤x

(
x2

r2
+ O

(x

r

))
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=
x2

2
(ζ(2) + O(1/x)) + O(x log x)

=
ζ(2)x2

2
+ O(x log x)

as x →∞. Hence

R(N) ∼ π2

2
N2 ∼ 4ζ(2)

(
N2 − N2

4

)
and so ζ(2) = π2/6.

This is an exercise in Hua’s textbook on number theory.
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