Evaluating $\zeta(2)$

Robin Chapman
Department of Mathematics
University of Exeter, Exeter, EX4 4QE, UK
rjc@maths.ex.ac.uk

30 April 1999 (corrected 7 July 2003)

I list several proofs of the celebrated identity:

$$
\begin{equation*}
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} . \tag{1}
\end{equation*}
$$

As it is clear that

$$
\frac{3}{4} \zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{m=1}^{\infty} \frac{1}{(2 m)^{2}}=\sum_{r=0}^{\infty} \frac{1}{(2 r+1)^{2}},
$$

(1) is equivalent to

$$
\begin{equation*}
\sum_{r=0}^{\infty} \frac{1}{(2 r+1)^{2}}=\frac{\pi^{2}}{8} \tag{2}
\end{equation*}
$$

Many of the proofs establish this latter identity first.
None of these proofs is original; most are well known, but some are not as familiar as they might be. I shall try to assign credit the best I can, and I would be grateful to anyone who could shed light on the origin of any of these methods. I would like to thank Tony Lezard, José Carlos Santos and Ralph Krause, who spotted errors in earlier versions, and Richard Carr for pointing out an egregious solecism.

Proof 1: Note that

$$
\frac{1}{n^{2}}=\int_{0}^{1} \int_{0}^{1} x^{n-1} y^{n-1} d x d y
$$

and by the monotone convergence theorem we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\int_{0}^{1} \int_{0}^{1}\left(\sum_{n=1}^{\infty}(x y)^{n-1}\right) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x y}
\end{aligned}
$$

We change variables in this by putting $(u, v)=((x+y) / 2,(y-x) / 2)$, so that $(x, y)=(u-v, u+v)$. Hence

$$
\zeta(2)=2 \iint_{S} \frac{d u d v}{1-u^{2}+v^{2}}
$$

where S is the square with vertices $(0,0),(1 / 2,-1 / 2),(1,0)$ and $(1 / 2,1 / 2)$. Exploiting the symmetry of the square we get

$$
\begin{aligned}
\zeta(2)= & 4 \int_{0}^{1 / 2} \int_{0}^{u} \frac{d v d u}{1-u^{2}+v^{2}}+4 \int_{1 / 2}^{1} \int_{0}^{1-u} \frac{d v d u}{1-u^{2}+v^{2}} \\
= & 4 \int_{0}^{1 / 2} \frac{1}{\sqrt{1-u^{2}}} \tan ^{-1}\left(\frac{u}{\sqrt{1-u^{2}}}\right) d u \\
& +4 \int_{1 / 2}^{1} \frac{1}{\sqrt{1-u^{2}}} \tan ^{-1}\left(\frac{1-u}{\sqrt{1-u^{2}}}\right) d u .
\end{aligned}
$$

Now $\tan ^{-1}\left(u /\left(\sqrt{1-u^{2}}\right)\right)=\sin ^{-1} u$, and if $\theta=\tan ^{-1}\left((1-u) /\left(\sqrt{1-u^{2}}\right)\right)$ then $\tan ^{2} \theta=(1-u) /(1+u)$ and $\sec ^{2} \theta=2 /(1+u)$. It follows that $u=$ $2 \cos ^{2} \theta-1=\cos 2 \theta$ and so $\theta=\frac{1}{2} \cos ^{-1} u=\frac{\pi}{4}-\frac{1}{2} \sin ^{-1} u$. Hence

$$
\begin{aligned}
\zeta(2) & =4 \int_{0}^{1 / 2} \frac{\sin ^{-1} u}{\sqrt{1-u^{2}}} d u+4 \int_{1 / 2}^{1} \frac{1}{\sqrt{1-u^{2}}}\left(\frac{\pi}{4}-\frac{\sin ^{-1} u}{2}\right) d u \\
& =\left[2\left(\sin ^{-1} u\right)^{2}\right]_{0}^{1 / 2}+\left[\pi \sin ^{-1} u-\left(\sin ^{-1} u\right)^{2}\right]_{1 / 2}^{1} \\
& =\frac{\pi^{2}}{18}+\frac{\pi^{2}}{2}-\frac{\pi^{2}}{4}-\frac{\pi^{2}}{6}+\frac{\pi^{2}}{36} \\
& =\frac{\pi^{2}}{6}
\end{aligned}
$$

as required.
This is taken from an article in the Mathematical Intelligencer by Apostol in 1983.

Proof 2: We start in a similar fashion to Proof 1, but we use (2). We get

$$
\sum_{r=0}^{\infty} \frac{1}{(2 r+1)^{2}}=\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x^{2} y^{2}}
$$

We make the substitution

$$
(u, v)=\left(\tan ^{-1} x \sqrt{\frac{1-y^{2}}{1-x^{2}}}, \tan ^{-1} y \sqrt{\frac{1-x^{2}}{1-y^{2}}}\right)
$$

so that

$$
(x, y)=\left(\frac{\sin u}{\cos v}, \frac{\sin v}{\cos u}\right) .
$$

The Jacobian matrix is

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\left|\begin{array}{cc}
\cos u / \cos v & \sin u \sin v / \cos ^{2} v \\
\sin u \sin v / \cos ^{2} u & \cos v / \cos u
\end{array}\right| \\
& =1-\frac{\sin ^{2} u \sin ^{2} v}{\cos ^{2} u \cos ^{2} v} \\
& =1-x^{2} y^{2} .
\end{aligned}
$$

Hence

$$
\frac{3}{4} \zeta(2)=\iint_{A} d u d v
$$

where

$$
A=\{(u, v): u>0, v>0, u+v<\pi / 2\}
$$

has area $\pi^{2} / 8$, and again we get $\zeta(2)=\pi^{2} / 6$.
This is due to Calabi, Beukers and Kock.
Proof 3: We use the power series for the inverse sine function:

$$
\sin ^{-1} x=\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)} \frac{x^{2 n+1}}{2 n+1}
$$

valid for $|x| \leq 1$. Putting $x=\sin t$ we get

$$
t=\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdots(2 n-1)}{2 \cdot 4 \cdots 2 n} \frac{\sin ^{2 n+1} t}{2 n+1}
$$

for $|t| \leq \frac{\pi}{2}$. Integrating from 0 to $\frac{\pi}{2}$ and using the formula

$$
\int_{0}^{\pi / 2} \sin ^{2 n+1} x d x=\frac{2 \cdot 4 \cdots(2 n)}{3 \cdot 5 \cdots(2 n+1)}
$$

gives us

$$
\frac{\pi^{2}}{8}=\int_{0}^{\pi / 2} t d t=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

which is (2).
This comes from a note by Boo Rim Choe in the American Mathematical Monthly in 1987.

Proof 4: We use the L^{2}-completeness of the trigonometric functions. Let $e_{n}(x)=\exp (2 \pi i n x)$ where $n \in \mathbf{Z}$. The e_{n} form a complete orthonormal set in $L^{2}[0,1]$. If we denote the inner product in $L^{2}[0,1]$ by \langle,$\rangle , then Parseval's$ formula states that

$$
\langle f, f\rangle=\sum_{n=-\infty}^{\infty}\left|\left\langle f, e_{n}\right\rangle\right|^{2}
$$

for all $f \in L^{2}[0,1]$. We apply this to $f(x)=x$. We easily compute $\langle f, f\rangle=\frac{1}{3}$, $\left\langle f, e_{0}\right\rangle=\frac{1}{2}$ and $\left\langle f, e_{n}\right\rangle=\frac{1}{2 \pi i n}$ for $n \neq 0$. Hence Parseval gives us

$$
\frac{1}{3}=\frac{1}{4}+\sum_{n \in \mathbf{Z}, n \neq 0} \frac{1}{4 \pi^{2} n^{2}}
$$

and so $\zeta(2)=\pi^{2} / 6$.
Alternatively we can apply Parseval to $g=\chi_{[0,1 / 2]}$. We get $\langle g, g\rangle=\frac{1}{2}$, $\left\langle g, e_{0}\right\rangle=\frac{1}{2}$ and $\left\langle g, e_{n}\right\rangle=\left((-1)^{n}-1\right) / 2 \pi i n$ for $n \neq 0$. Hence Parseval gives us

$$
\frac{1}{2}=\frac{1}{4}+2 \sum_{r=0}^{\infty} \frac{1}{\pi^{2}(2 r+1)^{2}}
$$

and using (2) we again get $\zeta(2)=\pi^{2} / 6$.
This is a textbook proof, found in many books on Fourier analysis.
Proof 5: We use the fact that if f is continuous, of bounded variation on [0,1] and $f(0)=f(1)$, then the Fourier series of f converges to f pointwise. Applying this to $f(x)=x(1-x)$ gives

$$
x(1-x)=\frac{1}{6}-\sum_{n=1}^{\infty} \frac{\cos 2 \pi n x}{\pi^{2} n^{2}}
$$

and putting $x=0$ we get $\zeta(2)=\pi^{2} / 6$. Alternatively putting $x=1 / 2$ gives

$$
\frac{\pi^{2}}{12}=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which again is equivalent to $\zeta(2)=\pi^{2} / 6$.
Another textbook proof.

Proof 6: Consider the series

$$
f(t)=\sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}} .
$$

This is uniformly convergent on the real line. Now if $\epsilon>0$, then for $t \in$ [$\epsilon, 2 \pi-\epsilon]$ we have

$$
\begin{aligned}
\sum_{n=1}^{N} \sin n t & =\sum_{n=1}^{N} \frac{e^{i n t}-e^{-i n t}}{2 i} \\
& =\frac{e^{i t}-e^{i(N+1) t}}{2 i\left(1-e^{i t}\right)}-\frac{e^{-i t}-e^{-i(N+1) t}}{2 i\left(1-e^{-i t}\right)} \\
& =\frac{e^{i t}-e^{i(N+1) t}}{2 i\left(1-e^{i t}\right)}+\frac{1-e^{-i N t}}{2 i\left(1-e^{i t}\right)}
\end{aligned}
$$

and so this sum is bounded above in absolute value by

$$
\frac{2}{\mid 1-e^{i t \mid}}=\frac{1}{\sin t / 2}
$$

Hence these sums are uniformly bounded on $[\epsilon, 2 \pi-\epsilon]$ and by Dirichlet's test the sum

$$
\sum_{n=1}^{\infty} \frac{\sin n t}{n}
$$

is uniformly convergent on $[\epsilon, 2 \pi-\epsilon]$. It follows that for $t \in(0,2 \pi)$

$$
\begin{aligned}
f^{\prime}(t) & =-\sum_{n=1}^{\infty} \frac{\sin n t}{n} \\
& =-\operatorname{Im}\left(\sum_{n=1}^{\infty} \frac{e^{i n t}}{n}\right) \\
& =\operatorname{Im}\left(\log \left(1-e^{i t}\right)\right) \\
& =\arg \left(1-e^{i t}\right) \\
& =\frac{t-\pi}{2} .
\end{aligned}
$$

By the fundamental theorem of calculus we have

$$
f(\pi)-f(0)=\int_{0}^{\pi} \frac{t-\pi}{2} d t=-\frac{\pi^{2}}{4} .
$$

But $f(0)=\zeta(2)$ and $f(\pi)=\sum_{n=1}^{\infty}(-1)^{n} / n^{2}=-\zeta(2) / 2$. Hence $\zeta(2)=\pi^{2} / 6$.

Alternatively we can put

$$
D(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

the dilogarithm function. This is uniformly convergent on the closed unit disc, and satisfies $D^{\prime}(z)=-(\log (1-z)) / z$ on the open unit disc. Note that $f(t)=\operatorname{Re} D\left(e^{2 \pi i t}\right)$. We may now use arguments from complex variable theory to justify the above formula for $f^{\prime}(t)$.

This is just the previous proof with the Fourier theory eliminated.
Proof 7: We use the infinite product

$$
\sin \pi x=\pi x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right)
$$

for the sine function. Comparing coefficients of x^{3} in the MacLaurin series of sides immediately gives $\zeta(2)=\pi^{2} / 6$. An essentially equivalent proof comes from considering the coefficient of x in the formula

$$
\pi \cot \pi x=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{2 x}{x^{2}-n^{2}}
$$

The original proof of Euler!
Proof 8: We use the calculus of residues. Let $f(z)=\pi z^{-2} \cot \pi z$. Then f has poles at precisely the integers; the pole at zero has residue $-\pi^{2} / 3$, and that at a non-zero integer n has residue $1 / n^{2}$. Let N be a natural number and let C_{N} be the square contour with vertices $(\pm 1 \pm i)(N+1 / 2)$. By the calculus of residues

$$
-\frac{\pi^{2}}{3}+2 \sum_{n=1}^{N} \frac{1}{n^{2}}=\frac{1}{2 \pi i} \int_{C_{N}} f(z) d z=I_{N}
$$

say. Now if $\pi z=x+i y$ a straightforward calculation yields

$$
|\cot \pi z|^{2}=\frac{\cos ^{2} x+\sinh ^{2} y}{\sin ^{2} x+\sinh ^{2} y}
$$

It follows that if z lies on the vertical edges of C_{n} then

$$
|\cot \pi z|^{2}=\frac{\sinh ^{2} y}{1+\sinh ^{2} y}<1
$$

and if z lies on the horizontal edges of C_{n}

$$
|\cot \pi z|^{2} \leq \frac{1+\sinh ^{2} \pi(N+1 / 2)}{\sinh ^{2} \pi(N+1 / 2)}=\operatorname{coth}^{2} \pi(N+1 / 2) \leq \operatorname{coth}^{2} \pi / 2
$$

Hence $|\cot \pi z| \leq K=\operatorname{coth} \frac{\pi}{2}$ on C_{N}, and so $|f(z)| \leq \pi K /(N+1 / 2)^{2}$ on C_{N}. This estimate shows that

$$
\left|I_{n}\right| \leq \frac{1}{2 \pi} \frac{\pi K}{(N+1 / 2)^{2}} 8(N+1 / 2)
$$

and so $I_{N} \rightarrow 0$ as $N \rightarrow \infty$. Again we get $\zeta(2)=\pi^{2} / 6$.
Another textbook proof, found in many books on complex analysis.
Proof 9: We first note that if $0<x<\frac{\pi}{2}$ then $\sin x<x<\tan x$ and so $\cot ^{2} x<x^{-2}<1+\cot ^{2} x$. If n and N are natural numbers with $1 \leq n \leq N$ this implies that

$$
\cot ^{2} \frac{n \pi}{(2 N+1)}<\frac{(2 N+1)^{2}}{n^{2} \pi^{2}}<1+\cot ^{2} \frac{n \pi}{(2 N+1)}
$$

and so

$$
\begin{aligned}
& \frac{\pi^{2}}{(2 N+1)^{2}} \sum_{n=1}^{N} \cot ^{2} \frac{n \pi}{(2 N+1)} \\
< & \sum_{n=1}^{N} \frac{1}{n^{2}} \\
< & \frac{N \pi^{2}}{(2 N+1)^{2}}+\frac{\pi^{2}}{(2 N+1)^{2}} \sum_{n=1}^{N} \cot ^{2} \frac{n \pi}{(2 N+1)} .
\end{aligned}
$$

If

$$
A_{N}=\sum_{n=1}^{N} \cot ^{2} \frac{n \pi}{(2 N+1)}
$$

it suffices to show that $\lim _{N \rightarrow \infty} A_{N} / N^{2}=\frac{2}{3}$.
If $1 \leq n \leq N$ and $\theta=n \pi /(2 N+1)$, then $\sin (2 N+1) \theta=0$ but $\sin \theta \neq 0$.
Now $\sin (2 N+1) \theta$ is the imaginary part of $(\cos \theta+i \sin \theta)^{2 N+1}$, and so

$$
\begin{aligned}
\frac{\sin (2 N+1) \theta}{\sin ^{2 N+1} \theta} & =\frac{1}{\sin ^{2 N+1} \theta} \sum_{k=0}^{N}(-1)^{k}\binom{2 N+1}{2 N-2 k} \cos ^{2(N-k)} \theta \sin ^{2 k+1} \theta \\
& =\sum_{k=0}^{N}(-1)^{k}\binom{2 N+1}{2 N-2 k} \cot ^{2(N-k)} \theta \\
& =f\left(\cot ^{2} \theta\right)
\end{aligned}
$$

say, where $f(x)=(2 N+1) x^{N}-\binom{2 N+1}{3} x^{N-1}+\cdots$. Hence the roots of $f(x)=0$ are $\cot ^{2}(n \pi /(2 N+1))$ where $1 \leq n \leq N$ and so $A_{N}=N(2 N-1) / 3$. Thus $A_{N} / N^{2} \rightarrow \frac{2}{3}$, as required.

This is an exercise in Apostol's Mathematical Analysis (Addison-Wesley, 1974).

Proof 10: Given an odd integer $n=2 m+1$ it is well known that $\sin n x=$ $F_{n}(\sin x)$ where F_{n} is a polynomial of degree n. Since the zeros of $F_{n}(y)$ are the values $\sin (j \pi / n)(-m \leq j \leq m)$ and $\lim _{y \rightarrow 0}\left(F_{n}(y) / y\right)=n$ then

$$
F_{n}(y)=n y \prod_{j=1}^{m}\left(1-\frac{y^{2}}{\sin ^{2}(j \pi / n)}\right)
$$

and so

$$
\sin n x=n \sin x \prod_{j=1}^{m}\left(1-\frac{\sin ^{2} x}{\sin ^{2}(j \pi / n)}\right) .
$$

Comparing the coefficients of x^{3} in the MacLaurin expansion of both sides gives

$$
-\frac{n^{3}}{6}=-\frac{n}{6}-n \sum_{j=1}^{m} \frac{1}{\sin ^{2}(j \pi / n)}
$$

and so

$$
\frac{1}{6}-\sum_{j=1}^{m} \frac{1}{n^{2} \sin ^{2}(j \pi / n)}=\frac{1}{6 n^{2}}
$$

Fix an integer M and let $m>M$. Then

$$
\frac{1}{6}-\sum_{j=1}^{M} \frac{1}{n^{2} \sin ^{2}(j \pi / n)}=\frac{1}{6 n^{2}}+\sum_{j=M+1}^{m} \frac{1}{n^{2} \sin ^{2}(j \pi / n)}
$$

and using the inequality $\sin x>\frac{2}{\pi} x$ for $0<x<\frac{\pi}{2}$, we get

$$
0<\frac{1}{6}-\sum_{j=1}^{M} \frac{1}{n^{2} \sin ^{2}(j \pi / n)}<\frac{1}{6 n^{2}}+\sum_{j=M+1}^{m} \frac{1}{4 j^{2}} .
$$

Letting m tend to infinity now gives

$$
0 \leq \frac{1}{6}-\sum_{j=1}^{M} \frac{1}{\pi^{2} j^{2}} \leq \sum_{j=M+1}^{\infty} \frac{1}{4 j^{2}}
$$

Hence

$$
\sum_{j=1}^{\infty} \frac{1}{\pi^{2} j^{2}}=\frac{1}{6} .
$$

This comes from a note by Kortram in Mathematics Magazine in 1996.
Proof 11: Consider the integrals

$$
I_{n}=\int_{0}^{\pi / 2} \cos ^{2 n} x d x \quad \text { and } \quad J_{n}=\int_{0}^{\pi / 2} x^{2} \cos ^{2 n} x d x
$$

By a well-known reduction formula

$$
I_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} \frac{\pi}{2}=\frac{(2 n)!}{4^{n} n!^{2}} \frac{\pi}{2} .
$$

If $n>0$ then integration by parts gives

$$
\begin{aligned}
I_{n}= & {\left[x \cos ^{2 n} x\right]_{0}^{\pi / 2}+2 n \int_{0}^{\pi / 2} x \sin x \cos ^{2 n-1} x d x } \\
= & n\left[x^{2} \sin x \cos ^{2 n-1} x\right]_{0}^{\pi / 2} \\
& -n \int_{0}^{\pi / 2} x^{2}\left(\cos ^{2 n} x-(2 n-1) \sin ^{2} x \cos ^{2 n-2} x\right) d x \\
= & n(2 n-1) J_{n-1}-2 n^{2} J_{n} .
\end{aligned}
$$

Hence

$$
\frac{(2 n)!}{4^{n} n!^{2}} \frac{\pi}{2}=n(2 n-1) J_{n-1}-2 n^{2} J_{n}
$$

and so

$$
\frac{\pi}{4 n^{2}}=\frac{4^{n-1}(n-1)!^{2}}{(2 n-2)!} J_{n-1}-\frac{4^{n} n!^{2}}{(2 n)!} J_{n}
$$

Adding this up from $n=1$ to N gives

$$
\frac{\pi}{4} \sum_{n=1}^{N} \frac{1}{n^{2}}=J_{0}-\frac{4^{N} N!^{2}}{(2 N)!} J_{N}
$$

Since $J_{0}=\pi^{3} / 24$ it suffices to show that $\lim _{N \rightarrow \infty} 4^{N} N!^{2} J_{N} /(2 N)!=0$. But the inequality $x<\frac{\pi}{2} \sin x$ for $0<x<\frac{\pi}{2}$ gives

$$
J_{N}<\frac{\pi^{2}}{4} \int_{0}^{\pi_{2}} \sin ^{2} x \cos ^{2 N} x d x=\frac{\pi^{2}}{4}\left(I_{N}-I_{N+1}\right)=\frac{\pi^{2} I_{N}}{8(N+1)}
$$

and so

$$
0<\frac{4^{N} N!}{(2 N)!} J_{N}<\frac{\pi^{3}}{16(N+1)} .
$$

This completes the proof.
This proof is due to Matsuoka (American Mathematical Monthly, 1961).
Proof 12: Consider the well-known identity for the Fejér kernel:

$$
\left(\frac{\sin n x / 2}{\sin x / 2}\right)^{2}=\sum_{k=-n}^{n}(n-|k|) e^{i k x}=n+2 \sum_{k=1}^{n}(n-k) \cos k x .
$$

Hence

$$
\begin{aligned}
\int_{0}^{\pi} x\left(\frac{\sin n x / 2}{\sin x / 2}\right)^{2} d x & =\frac{n \pi^{2}}{2}+2 \sum_{k=1}^{n}(n-k) \int_{0}^{\pi} x \cos k x d x \\
& =\frac{n \pi^{2}}{2}-2 \sum_{k=1}^{n}(n-k) \frac{1-(-1)^{k}}{k^{2}} \\
& =\frac{n \pi^{2}}{2}-4 n \sum_{1 \leq k \leq n, 2 \nmid k} \frac{1}{k^{2}}+4 \sum_{1 \leq k \leq n, 2 \nmid k} \frac{1}{k}
\end{aligned}
$$

If we let $n=2 N$ with N an integer then

$$
\int_{0}^{\pi} \frac{x}{8 N}\left(\frac{\sin N x}{\sin x / 2}\right)^{2} d x=\frac{\pi^{2}}{8}-\sum_{r=0}^{N-1} \frac{1}{(2 r+1)^{2}}+O\left(\frac{\log N}{N}\right)
$$

But since $\sin \frac{x}{2}>\frac{x}{\pi}$ for $0<x<\pi$ then

$$
\begin{aligned}
\int_{0}^{\pi} \frac{x}{8 N}\left(\frac{\sin N x}{\sin x / 2}\right)^{2} d x & <\frac{\pi^{2}}{8 N} \int_{0}^{\pi} \sin ^{2} N x \frac{d x}{x} \\
& =\frac{\pi^{2}}{8 N} \int_{0}^{N \pi} \sin ^{2} y \frac{d y}{y}=O\left(\frac{\log N}{N}\right) .
\end{aligned}
$$

Taking limits as $N \rightarrow \infty$ gives

$$
\frac{\pi^{2}}{8}=\sum_{r=0}^{\infty} \frac{1}{(2 r+1)^{2}}
$$

This proof is due to Stark (American Mathematical Monthly, 1969).
Proof 13: We carefully square Gregory's formula

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

We can rewrite this as $\lim _{N \rightarrow \infty} a_{N}=\frac{\pi}{2}$ where

$$
a_{N}=\sum_{n=-N}^{N} \frac{(-1)^{n}}{2 n+1} .
$$

Let

$$
b_{N}=\sum_{n=-N}^{N} \frac{1}{(2 n+1)^{2}}
$$

By (2) it suffices to show that $\lim _{N \rightarrow \infty} b_{N}=\pi^{2} / 4$, so we shall show that $\lim _{N \rightarrow \infty}\left(a_{N}^{2}-b_{N}\right)=0$.

If $n \neq m$ then

$$
\frac{1}{(2 n+1)(2 m+1)}=\frac{1}{2(m-n)}\left(\frac{1}{2 n+1}-\frac{1}{2 m+1}\right)
$$

and so

$$
\begin{aligned}
a_{N}^{2}-b_{N} & =\sum_{n=-N}^{N} \sum_{m=-N}^{N} \frac{(-1)^{m+n}}{2(m-n)}\left(\frac{1}{2 n+1}-\frac{1}{2 m+1}\right) \\
& =\sum_{n=-N}^{N} \sum_{m=-N}^{N} \frac{(-1)^{m+n}}{(2 n+1)(m-n)} \\
& =\sum_{n=-N}^{N} \frac{(-1)^{n} c_{n, N}}{2 n+1}
\end{aligned}
$$

where the dash on the summations means that terms with zero denominators are omitted, and

$$
c_{n, N}=\sum_{m=-N}^{N} \frac{(-1)^{m}}{(m-n)} .
$$

It is easy to see that $c_{-n, N}=-c_{n, N}$ and so $c_{0, N}=0$. If $n>0$ then

$$
c_{n, N}=(-1)^{n+1} \sum_{j=N-n+1}^{N+n} \frac{(-1)^{j}}{j}
$$

and so $\left|c_{n, N}\right| \leq 1 /(N-n+1)$ as the magnitude of this alternating sum is not more than that of its first term. Thus

$$
\left|a_{N}^{2}-b_{N}\right| \leq \sum_{n=1}^{N}\left(\frac{1}{(2 n-1)(N-n+1)}+\frac{1}{(2 n+1)(N-n+1)}\right)
$$

$$
\begin{aligned}
= & \sum_{n=1}^{N} \frac{1}{2 N+1}\left(\frac{2}{2 n-1}+\frac{1}{N-n+1}\right) \\
& +\sum_{n=1}^{N} \frac{1}{2 N+3}\left(\frac{2}{2 n+1}+\frac{1}{N-n+1}\right) \\
\leq & \frac{1}{2 N+1}(2+4 \log (2 N+1)+2+2 \log (N+1))
\end{aligned}
$$

and so $a_{N}^{2}-b_{N} \rightarrow 0$ as $N \rightarrow \infty$ as required.
This is an exercise in Borwein \& Borwein's Pi and the AGM (Wiley, 1987).

Proof 14: This depends on the formula for the number of representations of a positive integer as a sum of four squares. Let $r(n)$ be the number of quadruples (x, y, z, t) of integers such that $n=x^{2}+y^{2}+z^{2}+t^{2}$. Trivially $r(0)=1$ and it is well known that

$$
r(n)=8 \sum_{m \mid n, 4 \nmid m} m
$$

for $n>0$. Let $R(N)=\sum_{n=0}^{N} r(n)$. It is easy to see that $R(N)$ is asymptotic to the volume of the 4 -dimensional ball of radius \sqrt{N}, i.e., $R(N) \sim \frac{\pi^{2}}{2} N^{2}$. But
$R(N)=1+8 \sum_{n=1}^{N} \sum_{m \mid n, 4 \nmid m} m=1+8 \sum_{m \leq N, 4 \nmid m} m\left\lfloor\frac{N}{m}\right\rfloor=1+8(\theta(N)-4 \theta(N / 4))$
where

$$
\theta(x)=\sum_{m \leq x} m\left\lfloor\frac{x}{m}\right\rfloor .
$$

But

$$
\begin{aligned}
\theta(x) & =\sum_{m r \leq x} m \\
& =\sum_{r \leq x} \sum_{m=1}^{\lfloor x / r\rfloor} m \\
& =\frac{1}{2} \sum_{r \leq x}\left(\left\lfloor\frac{x}{r}\right\rfloor^{2}+\left\lfloor\frac{x}{r}\right\rfloor\right) \\
& =\frac{1}{2} \sum_{r \leq x}\left(\frac{x^{2}}{r^{2}}+O\left(\frac{x}{r}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{2}(\zeta(2)+O(1 / x))+O(x \log x) \\
& =\frac{\zeta(2) x^{2}}{2}+O(x \log x)
\end{aligned}
$$

as $x \rightarrow \infty$. Hence

$$
R(N) \sim \frac{\pi^{2}}{2} N^{2} \sim 4 \zeta(2)\left(N^{2}-\frac{N^{2}}{4}\right)
$$

and so $\zeta(2)=\pi^{2} / 6$.
This is an exercise in Hua's textbook on number theory.

